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H, in Superintense Laser Fields: Alignment and Spectral Restructuring
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In superintense, relatively high-frequency fields, H," presents a strikingly different behavior from that
found at lower frequencies. By applying the high-frequency Floquet theory of laser-atom interactions,
we predict for the ground state progressive alignment of the molecular axis with the direction of a
linearly polarized field as the intensity increases and persistence of the bond strength. The energy
spectrum undergoes complete restructuring: while the field-free rotational levels become librational,
they are gradually promoted with respect to the vibrational ones.

PACS numbers: 33.80.—b, 33.10.Jz

The behavior of simple molecules in intense laser fields
is now under active scrutiny. Much of the attention has
focused on H," as the prototype of a molecular system.
New phenomena have been detected, such as above-
threshold ionization (ATI), above-threshold dissociation
(ATD), bond-softening, and bond-hardening (trapping
of vibrational population) [1], all of which have been
anticipated theoretically [2].

In this paper, we explore the interaction of H," with
superintense fields (of the order of 1 a.u. of intensity,
3.51 X 10'® W/cm?) at laser frequencies higher than the
internal frequencies of the molecule in the field. This
regime reveals an entirely different physical behavior of
H," from the one studied so far at lower frequencies [1,2].
The method we use is stationary, high-frequency Floquet
theory (HFFT) of laser-atom interactions, originally de-
veloped for atoms [3] and now extended to molecules [4].
In the atomic case, HFFT has been able to predict exotic
phenomena such as stabilization [5], which has been re-
cently observed experimentally [6].

We describe the radiation field in the dipole approxi-
mation and consider the case of linear polarization A(t) =
—aésinwt, where € is the unit vector in the direction
of the field. The HFFT for H," proceeds from the
space-translated Schrodinger equation for the relative
motion [4,7]:
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Here r and R are the relative electronic and nuclear
coordinates, P and II are the relative electronic and
nuclear momenta, and % =+ ﬁ, where m and M are
the electron and proton masses. The field is contained
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only in a = &écoswt, where @ = ao(l + 3;) and
ag =1 17242,

By seeking stationary solutions of the Floquet type,
Eq. (1) can be transformed into a system of coupled equa-
tions for the Floquet components of W. At frequencies
sufficiently high with respect to an average molecular ex-
citation frequency in the field, this system reduces approx-
imately to a single equation, which yields the structure of
the molecule:
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+ V0<&0;r + %)]M(R, r) = Eu(R,r). ?2)

The connection between the exact W and u is ¥ =
uexp(—iEt). The terms Vy(aop;r = %) entering Eq. (2)
are the time averages of the corresponding ones in
Eq. (1); they can be viewed as the electrostatic potentials
generated by two “lines of charge” of length 2&,, parallel
to € and centered on the protons at +*R/2, with higher
charge density towards the end points (see Fig. 1). For
a discussion of Vp(ao;r) and for its analytic form, see
Ref. [3].

The multiphoton ionization and dissociation rates of
the HFFT are derived from transition amplitude formulas
containing as initial and final states, bound and continuum
solutions of Eq. (2). The rates vanish in the limit of large
w at fixed @y, i.e., the molecule is frozen to decay despite
being strongly distorted (see Ref. [4]). The calculation of
the rates at finite w will be carried out in a subsequent
stage.

As Eq. (2) is invariant only for rotations around the
field axis &, and (separately) for reflections of the elec-
tronic and nuclear coordinates through the origin, the
quantum numbers characterizing the manifolds of the so-
lutions are M (total magnetic), P, (electronic parity), and
P, (nuclear parity) [8].
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FIG. 1. “Lines of charge” generating the effective potential
acting on the electron in Egs. (2) and (3). These line segments
of length 2« are parallel to the field (taken along the :
axis) and centered at the protons *R/2; R is the internuclear
separation vector and we have taken & = 0.

For solving Eq. (2), we adopt the Born-Oppenheimer
(BO) approach, which in general is an excellent
approximation (see Ref. [9]), because of the rapid charac-
ter of the electronic motion. The first step is to solve for
the electronic motion in the field with clamped nuclei:

P2 R
[7 + V()(a()ﬂ' - —2‘) + Vo(ao;l' + %)}‘DY(T,R)

= Wy(ao:R)®,(r;R). (3)

In order to be consistent with the BO approximation we
are neglecting here and in the following all corrections of
order O(%",—). When the direction of the internuclear axis
R is at an angle ® with &, the total potential in Eq. (3)
does not even have axial symmetry (see Fig. 1), and we
are dealing with a three-dimensional (3D) nonseparable
problem. The eigenvalues W,(ao; R) will depend not
only on the magnitude of R but also on ®. However, as
easily shown, they do not depend on the azimuthal angle
of R around é.

In order to determine the nuclear motion, we make the
BO ansatz in Eq. (2):

uyn(Rv r) = é:yn(R)q)'y(r;R)v )
to find
[1—1—2+i+W(a-R)]f R) = Epntrn(R).  (5)
M R y\&X0, yn ynSyn .

This equation gives the energy levels and eigenstates of
the molecule at high frequencies and arbitrary intensity.
Because of the axial symmetry, its solution is a two-
dimensional (2D) nonseparable problem.

The eigenvalues of the electronic and nuclear equa-
tions were computed with the finite element method,
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as described elsewhere [10]. In the 3D electronic code
W, (ap; R) was computed to an absolute accuracy of 1074,
In the 2D nuclear calculation the accuracy of the levels
E,, is limited by that on W, (ao; R), although the relative
spacing E,, — E,, agrees with the most accurate field-
free BO calculations [9] to better than 1075,

We have computed the ground state of the electronic
equation (3), which in the field-free limit corresponds to
the Iso, state; the eigenvalue is denoted by Wy(ag;R).
We show in Fig. 2 the R and ® dependence of the (ax-
ially symmetric) nuclear potential Uy(ag; R,®) = 1/R +
Wo(ao; R) at various ag ranging from O to 2. At g = 0
we have the familiar angle-independent internuclear po-
tential. For larger values of ay, two wells are formed,
one around ® = 0° and the other around 180° (symmet-
ric with respect to ® = 90°), with a saddle at 90°. As
a result, the nuclear potential Up(a; R, ®) gives rise to a
tangential force directed towards the field axis €, in addi-
tion to the usual radial force.

The nuclear equation (5) was solved with the nu-
clear potential Up(ag;R,®) of the electronic ground
state. At each ap, we calculated the lowest-lying

®
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FIG. 2. Radial dependence of the lowest-lying potential sur-

face Ug(ag; R, ®) of H," in a linearly polarized radiation field
(in a.u.), at various O, the angle between the direction of the
molecular axis and the field. The lowest curve is the angle-
independent field-free potential (e = 0). For the other val-
ues of aq, the six curves shown correspond successively to
® = 0°, 18°, 36°, 72°, 90°, from bottom to top. Uy(ao;R,®)
is symmetric in ® with respect to 90°.
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TABLE 1.

a, dependence of the lowest-lying energy levels E of the M = 0 manifold of H," in a linearly polarized field and

of the dissociation energy D (in a.u.). Ey is the ground state energy of the H atom in the field. Each state is identified by its
librational and vibrational nodal numbers, j and v. When the gerade-ungerade levels have coalesced, only the gerade energy is

given; the sign ~ means same energy as above.

ag =0 ay = 0.2 ag =04 ay = 0.6 ap =10 ay = 5.0
juv E jv E juv E juv E juv E Jv E
00 —0.59712 00 —0.58595 00 —0.56616 00 —0.54586 00 —0.51109 00 —0.32426
10 —0.59686 10 ~ 10 ~ 10 ~ 10 ~ 10 ~
20 —0.59633 20 —0.58366 20 —0.56112 20 —0.53858 01 —0.50168 01 —0.32040
30 —0.59554 30 —0.58344 30 ~ 30 ~ 11 ~ 11 ~
40 —0.59449 40 —0.58243 40 —0.55697 01 —0.53648 20 —0.50000 02 —0.31658
50 —0.59321 50 —0.58122 50 ~ 11 ~ 30 ~ 12 ~
60 —0.59168 60 —0.57987 01 —0.55672 40 —0.53239 02 —0.49294 03 —0.31279
70 —0.58993 70 —0.57812 11 ~ 50 ~ 12 ~ 13 ~
80 —0.58796 80 —0.57635 60 —0.55395 21 —0.52963 21 —0.49142 20 —0.31122
01 —0.58716 01 —0.57621 70 —0.55356 31 ~ 31 ~ 30 ~
11 —0.58691 11 ~
Ey —0.5000 —0.4900 —0.4696 —0.4466 —0.4024 —0.2019
D 0.0971 0.0959 0.0966 0.0993 0.1087 0.1224

energy eigenstates of the M = 0 manifold, with both
gn and u, parities. Results are given in Table I. The
ground state experiences a substantial decrease in total
binding energy |E| with increasing ay, its value at ag = 5
being reduced to about half that at ap = 0. On the
other hand, the dissociation energy of the molecule in
the field, D = |E| — |Eyl, increases slightly over the
interval (see Table I); here Ey is the hydrogen binding
energy also in the field. This persistence of bond strength
of the ground state at high relative frequencies is in
sharp contrast to the bond softening manifested at lower
frequencies [1,2]. Also striking is the behavior of the
ground state eigenfunction represented in Fig. 3. The
ao = 0 case shows the familiar spherically symmetric
ground state with quantum numbers j =0, v =0,
concentrated radially around the equilibrium separation
R, = 2.0. However, already at «y = 0.2 the situation
has dramatically changed and the eigenfunction is split
into two lobes, centered in the wells of Uy(ag;R,®) at
® = 0° and 180°. Thus the unrestricted rotational motion
of the field-free H," reduces to a libration around the field
axis. This radiative alignment effect is obviously due to
the tangential force generated by the ® dependence of the
potential Ug(ag; R, ®). At the same time, because of the
splitting of the wave function into two nonoverlapping
lobes, a nuclear gerade-ungerade degeneracy sets in,
manifested in the coalescence of the lowest gerade and
ungerade levels (see Table I).

The excited states can be characterized by the quan-
tum numbers (j,v) representing, respectively, the angu-
lar and radial nodes of the eigenfunctions. For field-free
H,", (j,v) are good quantum numbers. (The number of
angular nodes in a plane passing through the polar axis is
2j.) With the field on, this description, although approxi-
mate, holds to a very good extent [11]. The reason is that in
the wells formed at ® = 0° and 180°, the internuclear po-

tential can be expressed approximately as Ug(ao; R, ®) =
flag;R) + g(ao; ®)/R?. This form of Up(ag;R,®) al-
lows local separability of the equation in these regions (the
only ones of interest for the lower-lying states), and hence
the introduction of j and v, now representing the nodes of
librational and vibrational motion in each well. (The num-
ber of angular nodes in a plane passing through the polar
axis is again 2j.) We have checked this assignment for all
eigenfunctions calculated.

The binding energies of the nuclear excited states have
the global tendency of decreasing with increasing aq,
which is due to the fact that the potential Uy(ag; R, ®)
is shifted upwards for all values of R as «g increases.
The excited state eigenfunctions show the same tendency
of alignment as that of the ground state. The changes
occurring in the potential Up(ao; R, ®) on the interval
0 < ap < 5 lead to a sweeping restructuring of the energy
spectrum, apparent in Table I. On one hand, there is
nuclear gerade-ungerade coalescence similar to that for
the ground state, and, on the other, the promotion of the
librational levels with respect to the vibrational ones.

Coalescent levels are those with quantum numbers
(j,v) and (j + 1,v). By ao =02 only the pairs
(0,0),(1,0) and (0,1),(1,1) have become degenerate. For
ap = 0.6, all such pairs shown in Table I are degenerate.
Regarding the promotion mechanism, this is due to the
fact that for increasing ag the two wells of Uy(ag; R, ®)
become progressively deeper with respect to ®, but more
extended radially (see Fig. 2). Hence the spacing of
the coalesced librational levels increases, while that of
the vibrational ones decreases, the consequence being
that at @y = 5 the lowest excited states are vibrational,
the first librational pair coming only in fourth place.
These changes obviously lead to a lot of (avoided) level
crossings in the correlation diagram relating the ap = 0
and large-ag limits [12].
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FIG. 3. Normalized Born-Oppenheimer nuclear ground state
eigenfunction at ap = 0, ao = 0.2, and ao = 0.8 as a function
of R and ® (in a.u.). Note the progressive radiative alignment
for increasing aj.
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