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We study the low-energy effective action for the theory of a one-component real scalar field in three
Euclidean dimensions (3D), in the symmetric phase, concentrating on its static part—effective potential
Verr(¢). We compute it from the probability distributions of the average magnetization in the 3D Ising
model in an external field, obtained by Monte Carlo computation. We find that the @8 term in Vi is
important in 3D, and compute the values of the universal four-point and six-point couplings.
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This work is devoted to the following problem: What
is the effective potential, and the corresponding effective
Ginzburg-Landau theory, that would provide not an exact,
but a reasonably phenomenologically accurate description
of the properties of the 3D Ising model (and other models
in the same universality class) near the phase transition?

The model in this universality class that is particularly
suitable for field-theoretical treatment is the theory of one-
component real scalar field in three Euclidean dimensions
(“3D ¢* theory”), defined by the (bare) action

S = f d3x{%6#¢a#¢ + %mzd)z + A¢4}. (1)

Thus, from the field-theoretical point of view, we study
the low-energy effective action of this theory.

This problem, being interesting by itself (it is closely
related to the Ising equation of state), is also relevant
to the theory of cosmological phase transitions in the
early Universe. The second-order high-temperature phase
transition in the (3 + 1)-dimensional quantum field theory
is in the universality class of the 3D Euclidean phase
transition. Weak first-order high-temperature transitions
can be studied in the framework of effective 3D Euclidean
theory as well. The effective potential for such problems
has been a subject of recent investigations [1]. The use
of the perturbation theory is hindered in three dimensions
by infrared divergences and by the strong-coupling nature
of the problem, and leads to controversy over such points
as existence and the role of the |¢|? term in the effective
potential.

Thus, the nonperturbative study of the effective action
of the simplest 3D field theory (1), or that of the 3D Ising
model, seems appropriate.

The model.—We study the Ising model with the
nearest-neighbor interaction on a simple cubic lattice. The
partition function is

Z = Zexp{ﬁz¢i¢j + JZdn}, ¢ = *1,
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where J is the homogeneous external field. We study
the symmetric (paramagnetic) phase, the coupling 3 being
less than, but close to, the critical value 8. = 0.221 65.

Our main subjects are the long-wave (low-momentum,
low-energy) properties of the model, when it is in the
scaling region, but not exactly at the critical point. Then
the properties are fixed, and the only free parameter is
the mass (= scale). The particles of the corresponding
(2 + 1)-dimensional field theory are massive (and thus
can be nonrelativistic) and have well-defined low-energy
properties, such as nonrelativistic scattering amplitudes.
The effective action we are looking for is a convenient
formalism to describe these properties.

The effective action.—The low-energy Ginzburg-
Landau-Wilson effective action can be written as

[

1 __
Sett fd3x{52¢‘a#¢a#¢ + Ve (o) — J(x)so(x)},

Vet = re? + (higher terms), 3)

where ¢(x) is the (slowly varying) average magnetization,
and we keep only the lowest-order gradient term. To
compute S one needs to know the effective potential
Vere() and the field renormalization factor Z,. To
compute the former, it is sufficient to consider only the
homogeneous external field J(x) = J; the latter can be
derived from the two-point correlation function of ¢ at
J=0.

Computation of Vgr.—For the computation of Vi we
have developed a method that is close in spirit to the
constrained effective potential approach [2], but contains
two significant improvements.

Thus, we derive Vg from the probability distribution
P(¢) of the order parameter (magnetization per site, ¢ =
%Z,- &;, where N is the total number of sites on the lat-
tice) [3] in the finite volume system (Fig. 1). The first im-
provement is that we consider the distributions at several
different values of J, and not only at J/ = 0. This makes
it possible to study Ves at larger values of ¢, where the
higher terms in V. become significant (the distribution
at J = 0 is determined mostly by the quadratic term).

© 1994 The American Physical Society 2015



VOLUME 73, NUMBER 15

PHYSICAL REVIEW LETTERS

10 OCTOBER 1994

10 — - . - . . ,
J =0.002

g | 30™3 lattice |
%‘ beta = 0.2186
c
561 (@  J=0.00066
£ J=0
24} il
Q
2
o,

O |

-03-02-0.1 0 0.1 0.2 0.3 04
Magnetization
10 T T T T T T T
J =0.002

g | 303 lattice 2 ]
%’ beta = 0.2186
c
% 6 r (b) J=0 1
=
= J=0 .
.(% 4t |
Q
2
Q51 ]

-0.3-02-0.1 0 0.1 02 0.3 0.4
Magnetization

FIG. 1.

40 R
35 | 583 Iattgce :
2 g0 | Peta=0.22055 |
@ z
g 25 ()
£ 20
8 15
S
& 10
5
O e il e
02 01 0 01 02 03 04
Magnetization
40 e
58**3 lattice X
35 ‘beta=o?i22055 1=0.0040% |
=30 t J=0.0027, .* :
8257 (d J=0.00174::" "
a 20 - ‘ :e*fAA ! .
= J=0.00095, :-.
< E 20 %o
R J=0.00038  v; |
& 10 [ J=0.00013 FA% 1 :
5 | J=0 ™Y ]
0 M F A A

0 0.1 0.2 0.3 0.4 0.5 0.6
Magnetization

-0.2-0.1

The probability density P(¢) for the magnetization per lattice site ¢, for the Ising model (2). The solid line corresponds

to (4), with V. chosen as follows: (a) V(o) = ro? + ue* + we®, three histograms fitted simultaneously; (b) the same
for V(@) = ro? + ue?; (©) Ver(@) = ro? + ue* + we®, histograms for J = 0, 0.000 13, and 0.00038 fitted simultaneously;

(d) Vese(@) = re? + up* with r and u taken from (c).

The second improvement is that we use the relation
between V(@) and P(¢) that takes into account the pre-
exponential factor:

2 1/2
P(g) (%%) exp{~ QW) + Qo). &)
This is an asymptotic expression for a system in a finite
box of volume ) with periodic boundary conditions, for
() — o, Practically, we see no deviation from it already
for L/¢ = 4, where ¢ is the correlation length and the
lattice size is L3. This relation can be found, in various
disguises, in the literature [4]. It seems to be useful for
the theory of the order parameter probability distribution
in general. For example, the statement that for the

2016

asymmetrical first-order transitions the two peaks of this
distribution have equal weight rather than equal height
at the transition point [5] is an immediate consequence
of (4).

Monte Carlo computation.—We study the 3D Ising
model (2) on a simple cubic lattice with periodic boundary
conditions, on lattices from 143 to 583 The Swendsen-
Wang cluster Monte Carlo algorithm in the external mag-
netic field [6] is used to generate the Boltzmann ensemble
of configurations. (We use the version of this algorithm
without the ghost spin.) For every configuration we mea-
sure magnetization per site ¢ = 3 >.; ¢; and compute the
histograms for the probability density P(¢), for several
values of J. Then we do the simultaneous fit of several
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histograms with (4). (We minimize the sum of y? from
the individual histograms.) The first ansatz to try is

Veir () = ro® + up?, (5)
inspired by the standard Ginzburg-Landau theory (or the
tree-level ¢* theory), where r and u are treated as fit
parameters. However, as can be seen from Figs. 1(b)
and 1(d), a good description of data with (5) cannot be
achieved. When the histograms are fitted simultaneously
[Fig. 1(b)], considerable discrepancy shows up in all of
them. When the parameters r and u are chosen to
describe correctly the properties at small ¢ [Fig. 1(d)], a
discrepancy shows up at larger ¢, indicating the presence
of higher terms in V.

So we consider a three-parameter expression

Verr(@) = ro? + up* + wob. (6)

We have found that it works very well, providing the ideal
fit at Fig. 1(a) (no systematic discrepancy between data
and fit, just noise), and only a small discrepancy shows up
for the larger values of ¢ at Fig. 1(c). We have found no
other reasonable ansatz that works so well.

Thus for every value of the bare coupling 8 we obtain
the low-energy effective Lagrangian

1__
Lo = EZ‘Plawpa“go + re? + upt + web. @

The three parameters r, u, and w are determined by the
fitting procedure described above. The field renormaliza-
tion factor Z,, is obtained from the propagator in the mo-
mentum space

Ga(p) = (3" D). S(p) — J—lﬁ—ZmeM, @®)

which behaves at small momentum p as
Gyp) ' =z,'p* + 2r. )

After the renormalization of ¢,

¢ =\Zoox. (10)

we obtain the effective Lagrangian in the form

1 1
Lot = S 0u@roupr + M 0k + meagi + 2ok,
(1)
where
2z Zou 2 12
m = el 84 = \/2—Z_¢7’ 86 = ¢W. ( )

In the continuum limit (m = ¢! — 0) this effective
Lagrangian should be universal. Thus, the only free
parameter is m, which determines the scale, while the
dimensionless four- and six-point couplings g4 and g¢ take
definite values that are the same for the whole 3D Ising
universality class.

Extrapolation to the continuum limit.— Apart from
statistical errors, there are two sources of systematic

errors: finite volume and finite ultraviolet cutoff. To
check for the finite volume effects, we increase the lattice
size L, keeping m fixed. We found that for L/¢ = 4 finite
volume effects are negligible. To check for the effect of
the finite cutoff, we keep L/¢ fixed at =~4.1, increase &,
and scale J according to

J o £7BY (Bs =~ 157, v = 0.63). (13)

It turns out that while for g, this effect is negligible
at £ = 4, a considerable dependence of g¢ on ¢ makes
it necessary to extrapolate the data to ¢ — ~ (Fig. 2).
The reasonable extrapolation is ge¢(€) = ge(®°) + a&™".
To get a reliable estimate of the exponent k, we have
considered the ¢ dependence of such a linear combination
of g4 and g¢ that has the smallest statistical error, and
found « = 1.5 * 0.2. That is why we plot g4 and g¢ as
functions of L™!°. We obtain in the continuum limit

g4 =097 £ 0.02, g =205 *0.15, (14)

where the errors are the standard deviations. The value
of g4 is in good agreement with the available data [7—-10],
providing a consistency check of our computation.

Some information on g¢ is also available in the litera-
ture, but much less than on g4. The only Monte Carlo
study we are aware of was performed by Wheater [10].
However, large statistical errors made it impossible to
reach a definite conclusion about the value of ge in the
continuum limit and whether it is different from zero.
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FIG. 2. The dimensionless four-point coupling gs and six-
point coupling g¢ as functions of the lattice size L. The ratio
L/€& is kept at about 4.1. The errors shown are standard
deviations.
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The € expansion for the Ising equation of state [11]
leads to the relation

8o 20 , 3 4
=2e — —€° + 1.2759€’ + O(€7),
(84)? 27

(15)

for the dimension of space d = 4 — €. Our result (14)
is in reasonable agreement with this, as well as with
the Wegner-Houghton equation [12] fixed point value
g6 = 2.40 and “effective average action” computations
[13] (fixed point value gg = 1.82, low-energy coupling
g6 = 2.23).

However, our result disagrees with the strong-coupling
expansion [14], which favors g¢ = 0, and with dimen-
sional expansion [15], which favors gg = <.

Discussion.— A widespread point of view on the effec-
tive potential in 3D is as follows. The problem should
be considered in the framework of the ¢* theory. Then
either one works on the tree level, and has the standard
Landau theory (5), or one includes loop corrections, and
then all powers of ¢ must be retained in Vi, ¢° being
treated on equal footing with other higher terms.

Our study corroborates an alternative point of view
advocated by Tetradis and Wetterich [13] that, while (5) is
a rather rough approximation, the ansatz (6) gives a very
good approximation, for ¢ not too large, and the higher
powers of ¢ can be considered as small corrections. This
is related to the smallness of the critical index 7 in the
3D theory. Similar behavior is observed at the weak first-
order transition in the 3D three-state Potts model [16].

This, together with the computation of the universal
dimensionless coupling g¢, is our main result. As a by-
product, we have checked the accuracy of the formula (4),
which is of interest for the theory of the order parameter
probability distribution.
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