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Synchrotron Computed Microtomography of Porous Media: Topology and Transports
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Computed microtomography is applied to a piece of Fontainebleau sandstone in order to determine the
geometrical structure of the pores. The topology of the void space is then derived from the tomographic
image of the volume. Permeability and conductivity are computed and found in good agreement with

experimental data. Perspectives offered by this new nondestructive method with a potential resolution
of the order of one micrometer or less are analyzed.

PACS numbers: 87.59.Fm, 44.30.+v, 47.55.Mh, 61.43.—j

1. Introduction. —Determination of the macroscopic
properties of porous materials is a longstanding prob-
lem of great interest, for instance for the oil industry [1].
This determination necessitates two steps; the geometry
of real materials must be adequately described, follow-
ing which the local field equations must be solved [2].
Given the availability of high-speed computers, the geo-
metrical step is the more difficult of the two. In the last
fifty years, there has been an intensive search of realistic
geometries [2], such as the recent method of reconstructed
media [2,3]. Experimental determination of detailed pore
structure by a classical method such as impregnation by
epoxy resin is tedious though it may yield interesting two-
dimensional informations on thin sections [4]. The obten-
tion of the three-dimensional data by serial sectioning is
still much more difficult [3,5].

The major purpose of this paper is to report on
application of synchrotron computed microtomography
(CMT) to the study of real porous media. Section 2
presents microtomography and the geological porous
medium which is used. The genus of the pore space is
determined in Sec. 3. Conductivity and permeability are
analyzed in Sec. 4. All these quantities are successfully
compared to independent estimations. General comments
on the potential of this new method are given in the final
section.

2. Experimental methods. —Fontainebleau sandstones
are usually selected for first measurements because they
are known to be remarkably homogeneous for geological
materials [6]. A family of 94 cylindrical plugs with 4 cm
diam and 4 cm high was collected [6]. The samples
could be classified into three groups, according to their
porosity. Twenty plugs were found in the central group
with a porosity, 8, equal to 0.197 and a permeability
K,„~= 1860 mD (1 Darcy = 10 '2 m ).

In porous materials, at each point x within the sample,
one can define a phase function Z(x) which is equal to
1 if x belongs to the pore space VL and 0 otherwise.
Since the following analysis is restricted to statistically
homogeneous media, the porosity, 8', can be defined by

the statistical average

8 = Z(x).

The experimental work on CMT was performed at
the Brookhaven National Synchrotron Light Source X26
beam line. The experimental arrangement has been
described previously [7]. Briefiy, a pencil beam of
x rays is formed by using a collimator with a fixed
opening. In the present work it was 5 p,m wide and
5 p, m high. The tomographic sections were obtained
using a first generation rotate-translate method. The
x rays transmitted through the sample are detected using
a scintillation counter operated in current mode. The
primary x-ray beam from the X26 bending magnet source
was filtered with a 100 p, m thick Mo foil to obtain
an x-ray energy spectrum with a full width at half
maximum of about 10 p, m and a mean energy of roughly
19 keV. The pixel size was 10 p,m X10 p, m and the
distance in the reconstructed images between consecutive
tomographic sections was 10 p, m. A volume image of
the Fontainebleau sandstone was obtained by making 100
sequential tomographic sections.

The image matrix size for each section was 303 X 303
elements. Only a limited image of the pore structure
in a volume 60 X 60 X 60 voxels at the center of the
sandstone is shown in Fig. 1. It can be usefully compared
to the pictures derived from serial sectioning of Vosges
sandstones [3].

From the original data of 303 & 303 X 100 voxels, the
largest parallelepipedic domain V entirely contained within
the sandstone was retained. This corresponds to the files
of integers {Z(i,j,k); i = 1, N,„;j = 1, N,Y; k = 1, N„)
with N, = 121, N,Y

= 161, N„=100. Five cubic sub-
domains Vt.;(i = 1, . . . , 5) of the total domain V were used
for the computations; the coordinates of the center of grav-
ity and the size N, of each subdomain are given in pixels
in Table I.

3. Topology. —The major purpose of topology is to
characterize the structure of a porous medium by a
few intrinsic parameters [5]. Put inside each pore of a
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FIG. 1. Views of the pore space of Fontainebleau sandstones
obtained by CMT. The pore structure is shown as white and
the rock as black. That is, the pore structure is opaque and the
rock transparent.

porous medium a single pipe (or wirelike an electrical
wire); hence the medium can be viewed as a set of
interconnected pipes called the graph G of the pore space.
G can be determined by a progressive conditional thinning
of the pore space [8].

In the numerical computations relative to the subdo-
mains VL; (i = I, . . . , 5), additional margins were added
to the sample [Fig. 2(a)], in order to prevent pores cross-
ing the volume boundaries from being eroded when ex-
tracting the graph. An empty slit was set along each face
of the parallelepiped. Impermeable boundaries were also
introduced along the y and z directions. These boundary
conditions might introduce some artifacts in the periph-
eral zone of the volume, which should become negligible
when the size of the volume is increased. P is equal
to the number of independent cycles of the graph and is
called the cyclomatic number or the genus

P,'=m; —n;+ I, (2)
where m; and n; are the number of edges and vertices
in the volume VL;. For a statistically homogeneous
medium, it is more appropriate to introduce the number

P," of cycles per unit volume. P,
" characterizes the

connectivity of the pore space, i.e., it measures the number
of independent paths between two points within the pore

space, or, equivalently the degree to which it is multiply
connected. Though P," helps to define the geometry
of the pore space and thus generated a lot of interest

[5,9], its relation to the macroscopic transport properties
is not direct; for instance, permeability is certainly a
function of P,", but is also proportional to the square of
a characteristic length, information which is not contained
in P,'.

The intrinsic numbers 8 and P," displayed in Table I
are relatively constant if one excepts VL&. This fluctuation
for VL~ might be due to the small size of the sample;
such statistical fluctuations are expected, since the order
of magnitude of the size of the grains which compose
these sandstones is 250 pm.

Another important interest of the P," is that they
are successfully compared to the values obtained for
reconstructed media based on Fontainebleau sandstones

[8] for similar porosities. P," was found equal to 830,
570, and 1750, for samples with porosities 8 = 0.14,
0.209, and 0.28, respectively. Results obtained on Berea
sandstones [9] are in fair agreement with these data since

P," is equal to 520. One could take into account the
correlation lengths to improve these comparisons.

Finally, the graph themselves are presented in Fig. 3.
In order to remove some unrealistic features occurring
in a peripheral layer as a consequence of the arbitrary
boundary condition assumed in the computation, a super-
ficial layer of two voxels has been removed all around the
volume [see Fig. 2(a)]. Qualitatively, these graphs com-
pare very well with the ones obtained for reconstructed
porous media [8]. It should be noticed how useful these
graphs are to schematize the structure of porous media,
even when the porosity is approximately equal to 20%;
this structure is indeed difficult to grasp on the 3D tomo-
gram itself (Fig. I).

4. Formation factor and permeability The .s—implest
macroscopic property of a porous medium is its macro-
scopic conductivity o.. The formation factor F is usually
defined as the inverse of the dimensionless relative elec-
trical conductivity /otr. n of a porous medium filled by a
conducting liquid phase of conductivity pro. In order to
determine F, one has to solve the Laplace equation in

samples of reconstructed media with no flux at the solid
walls and with periodic boundary conditions at the surface

TABLE I. Topological characteristics and macroscopic transport properties of samples VL; (i = I, . . . , 5) of the pore space obtained
with CMT.

Volume
Size
N,

Coordinates
of the
center Porosity Fp

Formation
factors
Fmin Fmax

Archie's law

(4)

Permeability
K„l(mD)

M=1 M=8
p

III

mm

VI. l

VI.2

VL

VL4

VLs

44'
643
84'
443
54'

60, 79, 48
60, 79, 48
60, 79, 48
30, 30, 30
35, 35, 35

0.211
0.185
0.179
0.174
0.186

26
42
36
54
43

17
25
26
43
36

19
27
28
48
41

16
20
21
22
20

2100
1400
1330
580
770

3000
1700
1600
610
810

1080
858
812
822
895

2002
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FIG. 2. Definitions of the boundary conditions. Subdomains
VL; (N,', heavy solid line) were cut out of the complete
sample V (121 X 161 X 100, solid line). (a) When the graph
is extracted, the additional margins are added. The graphs
displayed in Fig. 3 correspond to the inner subdomains (N, —
4)', dashed line. During the resolution of the transport
problems, an additional slice of length M is added to the
volume VL, (b).

of the unit cell [10]. The accuracy of the numerical
calculations in complex 3D domains has been checked
[10] and it was found to be of the order of 5%. Similar
computations have been recently performed [11],but they
were applied to model media instead of real ones as here.

Three different values are given in Table I for conduc-
tivity because of the overall spatially periodic boundary
condition. If the sample is used directly, the pores lo-
cated on opposite faces of the unit cell do not coincide;
the corresponding value for the formation factor is de-
noted by Fp. It is believed to give an upper limit for the
formation factor. Other values can be tentatively obtained
by the following operations. Spatially periodic boundary
conditions are applied, but the sample is supplemented
with a slice of length M between two successive cells in
the direction of the average potential gradient [Fig. 2(b)].
This is made in order to enforce continuous paths in the
pore space which cross the sample boundary. The con-
ductivity C of the slice is either 1 or e. The resolution of
the Laplace equation yields an apparent conductivity o pp

FIG. 3. Visualization of the pore spaces (a),(b) and of the
corresponding graphs (c),(d) in the concentric samples VL ~ and
VL2. The pore space is green and the rock is black (and
transparent as in Fig. 1). Only the inner subdomains sketched
in Fig. 2(a) are displayed. Note that the scales are different; the
size of the cube is 400 pm (a),(c); 600 p, m (b),(d). The edges
and vertices of the graphs are yellow and red, respectively.

from which an actual value F pp can be deduced

Fapp = (&c™Irapp/C)/&cOapp ~

Alternatively, constant temperatures can be imposed on
the two opposite faces of the sample with a jump AT.

In Table I, the minimal and maximal values F;„
and F,„obtained with these various schemes with M
ranging from 1 to 16 are listed; the precision of the
approximations involved in (3) is pretty good.

Because of the remarkable homogeneity of
Fontainebleau sandstones, the numerical results can
be compared with experimental data [10] obtained on
different samples. These data are well correlated by
Archie's law [2]

F,„p= kC™
with a cementation factor m = 1.64 and a constant k =
1.27. The comparison is made in Table I. It is seen that
the agreement between the calculated and the measured
formation factor F p is good to within a factor of 2.

Let us now consider the flow of an incompressible
Newtonian fluid at low Reynolds number which is gov-
erned by the Stokes equations with the no slip condition
at the wall [2]. The seepage velocity v is a linear function
of the macroscopic pressure gradient Vp.

(1v= —
i

—K Vp.
&p,
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Here only the component K of the permeability K
has been computed. Again because of the same problem
of adequate overall boundary conditions, an empty slice
of length M has been added to the sample on one of
the external faces normal to the average flow direction.
This addition has two effects; it influences the flow in the
porous sample (and thus the value of K,

„
itself) and also

the flow in the slice. If these effects are assumed to be
negligible, one has

K,, (
= K„„N,/(X, +M).. (6)

Because of the length of the computations, permeability
was only computed for M = 1 and 8 (see Table I).
Except for VL, (, the relative difference between these two
values is smaller than 10%, again this provides an order
of magnitude for the precision of the approximations
involved in (6). These values of K can be directly
compared with the experimental data K,„~= 1860 mD for
the same set of samples. The agreement is reasonable.
Note that these results are consistent also with the ones
found for the formation factor in the sense that the

permeability and the formation factor should vary in

opposite ways. The fluctuations can again be attributed
to the relatively small size of the samples when compared
to the average size of the solid grains which compose the
sandstone s.

One of the major problems which had severely slowed
down the pace of research in domains like porous media
is the fact that the geometrical influence is crucial and that
it was very hard to get detailed information on it. A tool
like CMT is essential for further studies of porous media,
since the geometry can be obtained with great accuracy
and relatively small efforts for the analysis of an extra
sample when the whole machinery has been set up.

Moreover, tomograms are delivered in a digital format
for further use by computer routines which are able to
calculate the macroscopic properties of the samples. The
applications which have been presented in this paper
show that the results of these routines are in satisfactory
agreement with measurements (though they were not
obtained on the same samples).

Three major paths of development can be foreseen
along these lines. In industrial applications, a CMT mea-

surement may generate input to a number of programs
which will provide overnight a number of macroscopic
properties. The cost of these computations is lower than

the one of the corresponding experimental measurements.
These computations will be of particular value for proper-
ties which are delicate to measure. Moreover the evolu-
tion of certain properties (because of deposition [12] for

instance) can be predicted in a short time, even though the
measurements are necessarily long.

The second path of development is the study of the ran-

dom geometry of real porous media. The characterization
of such geometries is of a high theoretical and practical
interest.

The last path concerns the tools themselves. On one
hand, CMT with an even better resolution can certainly be
envisioned and would open up further areas of research,
such as media with micro and macro porosities [2]. On
the other hand, more efficient numerical routines, specih-
cally development of algorithms for parallel computers,
can be conceived to calculate the properties of these
media.

This work was supported in part by the I '.S.
Department of Energy under Contract No. DE-AC02-
76CH00016 (K. W. J., P. S.) and the Swedish Natural

Science Research Council under Grant No. 8273-306
(P. S.). The Fontainebleau samples were kindly prepared

by B. Zinszner (I.F. P.').

[I J A. J. Katz and A. H. Thompson, Phys. Rev. B 34, 8179
(1986); A. H. Thompson, A. J. Katz, and R. A. Raschke.
Phys. Rev. Lett 58, 29 (1986).

[2] P. M. Adler, Porous Media: Geornettw and Transport»
(Butterworth/Heinemann, Stoneham, 1992); F. A. L.
Dullien, Porous Media: F/uid Transport and Pore
5tructure (Academic Press, New York, 1979).

[3] J. Yao, P. Frykman, F. Kalaydjian, J.F. Thovett, and

P, M. Adler, J. Colloid. Interface Sci. 156, 478 {1993).
[4] J.G. Berryman and S.C. Blair, J. Appl. Phys. 60, l930

( 1986).
[5] C. Lin and M. H. Cohen, J. Appl. Phys. 53, 4152 (1982),
[6] B. Zinszner and C. Meynot, Rev. Inst. Ft. 37, 337 (1982);

N. Lucet, Ph. D. thesis, Universite de Paris Vl, 1989.
[7] P. Spanne, K. W. Jones, H. Herman, and W. L. Riggs.

J. Thermal Spray Technology 2, 121 (1993).
[8] J. F. Thovert, J. Salles, and P. M. Adler. J. Microscopy

170, 65 (1993).
[9] I.F. MacDonald, P. M. Kaufmann, and F. A. L. Dullien.

J. Microsc. 144, 297 (1986).
[10] C. G. Jacquin, Rev. Inst. Fr. Pet. 19, 921 (1964); P. M.

Adler, C. G. Jacquin, and j.F. Thovert, Water Res. Res.
28, 1571 (1992); J.F. Thovert, F. Wary, and P. M. Adler.

J. Appl. Phys. 68, 3872 (1990).
[11] L. M. Schwartz, N. Martys, D. P. Bentz, E.J. Garhocz(.

and S. Torquato, Phys. Rev. E 4S, 4S84 ( 1 993).
[12] J. Salles, J.F. Thovert, and P. M. Adler, Chem. Eng. Sci.

48, 2839 (1993).






