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Stability of Solid Propellant Combustion
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The exact analytical solution of the stability problem of combustion in a solid propellant is obtained.
The problem is solved for the complete system of equations and for a reaction zone of finite thickness.
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The stability of a combustion wave is one of the most
important problems in combustion theory. The solution of
the problem can be essentially simplified if the character-
istic scales of the processes governing the combustion are
small in comparison with the characteristic dimensions of
the problem. A common approach to the stability problem
of a flame front is to treat the flame front or some inner
zone (usually it is the chemical reaction zone) as a surface
of discontinuity of zero thickness (Refs. [1,2], and refer-
ences therein). The model with the discontinuity is widely
used to solve the flame stability problem of both gaseous
[3,4] and condensed fuels [5—8]. However, the stability
problem thus formulated with a surface of discontinuity
leads to another difficulty, since it requires an additional
boundary condition (jump condition at the surface of dis-

continuity), which in principle cannot be obtained or jus-
tified within the scope of the discontinuity model [9,10].
Because of this, the boundary condition at the disconti-
nuity is introduced as a "physically reasonable" boundary
condition. The sensitivity of the solution obtained in this

way and the accuracy of the assumed boundary condi-
tion can be verified only by solving the complete problem
with finite thickness and real structure of the fronts [10].
Such an examination can be a rather difficult mathemati-

cal problem. For these reasons and because the flame is
a typical example of a wide class of the reacting waves
in the deflagration regime (ionizing wave, phase transition

wave, ablation wave, etc.), the exact solution of the com-
bustion stability problem is of special importance.

In this paper we demonstrate the exact analytical
solution for the problem of the stability of gasless
combustion propagating in solid propellant. An example
of such a flame is the combustion of thermites [11].
Since the fuel and the combustion products are in a solid

phase, there is no diffusion and the combustion propagates
by means of thermal conduction only. It was found

[1,2] that combustion in a solid propellant is unstable

and the fastest (one dimensional) instability results in a

pulsating regime of the combustion front. For the case
of large activation energy F. » T2/(T2 —T&), where T~

and T2 are the temperature of the fuel and the combustion
products respectively, the chemical reaction zone is thin

in comparison with the preheat zone. The solution of
the stability problem was obtained in [5—8] by regarding

the reaction zone as the inner discontinuity surface and

assuming that the temperature perturbation is continuous
at the discontinuity surface. The growth rate for the
fastest perturbations was found to be

where w& is the velocity of the combustion wave and y Is

the thermal diffusivity.
It is easily seen that there is a contradiction between

this solution and the basic assumption, since the tempera-
ture perturbations change on the length scale ==- Qy/tr,
which is of the same order as the thickness of the
reaction zone B,. t,

=- yT~/«t E Thus the pe. rturbations
are localized inside the chemical reaction zone. which
therefore cannot be treated as a surface of zero thickness.

Let us consider the spectral problem of the flame

stability in condensed matter, taking into account the finite

thickness of the reaction zone. The diffusion is negligible
and propagation of the flame is described by the equations

where a is the t'uel concentration, and g is the heat

release of the reaction. %e consider a first order chemical
reaction with the Arrhenius reaction rate; v, i» a constant
with units of time; c is the specific heat. The steadv

planar flame propagates along the .—, axis.
It is convenient to introduce the following dimension-

less variables and parameters

$ =:ut/g. . - =- t«t lg2. ' ==- k, /I. ,
'

The velocity of the steady flame is determined by the

eigenvalue A of the following system

d d() dH
— + et Aexp( —8/0} == 0,

d$ d$ d8
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dCl

d$
+ uAexp( —8/8) = 0,

with the boundary conditions

= 0, u = 0 for g ~ ~.

(9)

8=8), u=u) for/

(g)
dg

The solution of the problem (5)—(8) exists as an interme-
diate asymptotic in the limit Aexp( —8/8&) = 0, which
means the reaction time of the fuel in the initial state
is large in comparison with other time scales of the
problem [1].

In the limit Z(1 —8~) && 1 the fuel concentration is
constant and equal to the initial value u& everywhere up
to the thin chemical reaction zone of thickness I/O. For
the steady flame the temperature changes on a length scale
of order unity in dimensionless variables, while inside
the reaction zone the temperature changes slowly as I/O.
Thus, inside the reaction zone Eqs. (5) and (6) to within
terms of order 1/8 can be written as

dO

Taking into account that 0 = 1 inside the reaction zone
we obtain from (15)

—d 1n(u)
u = 6'u exp( —Sg) 0 exp(Sg)dg. (16)

dg

Assuming that 5 —8, and perturbations of the tempera-
ture 0 change on the length scale 5 '/ —8' ', which is
comparable to the thickness of the reaction zone, we ob-
tain from (16) to within terms of order 0 '

—O(S + K + Cdu/d$) = 0.

dn 1 2 —2

d$ 4
= ——C(1 —0'~) cosh [Z(1 —0" ~)g/2]. (19)

Substituting (19) into (18) and introducing the variables

Cda-
(17)

Substituting (17) into (14) and taking into account the
zero-order terms of the expansion in 8' ' « 1, we obtain
the equation for the temperature perturbation,

d OH

(18)

Taking into account (9) and the solution (11) for the
structure of the reaction zone we have

d20g d Qg

+ A exp( —8) exp[8(8 —1)] = 0, 5+ K2
g = 8(1 —8()$/2, S~ = 4 P1 —0)'' (2o)

with the boundary conditions d8/d$ = 1 —O& f«
0(1 —0)» 1 and d8/dg = 0 for 0 = 1. The solution
of Eq. (10) is

we obtain

d 0
dg

—(S —cosh g)O = 0, (21)

C(O 1) —ln(1 —exp[0(8 I)]) = C(1 —8~)g .

The corresponding eigenvalue is

which is the Schrodinger equation for the one-dimensional
motion of a particle of unit mass in the potential well
cosh 2 71. Equation (21) has an exact solution [12] with
the following eigenvalues

A = 8(1 —8~) exp(8). (12) S„„=4(—1 —2n + v5), (22)
For planar unperturbed flow, the small perturbations can
be chosen in the form

p(r. C. &) = p(r)exp(» + ~&&) ~

where g = xuf/g2, S = og2/uf, and K = kg2/uf are
the dimensionless coordinate, instability growth rate, and
perturbation wave number, respectively.

The linearized equations for the small perturbations
follow from the system (2), (3)
d - d0

df2 (K 0" ) — (S + K K ) O~

dg

+A(u + uCO/8 ) exp( —0/0) = 0, (14)

d
+ Su + A(u + uCO/0 ) exp( —8/8) = 0.

(15)
The boundary conditions for Eqs. (14) and (15) are that
the perturbations vanish as $

where n = 0, 1,2, . . .. Only the mode n = 0 corresponds
to growing perturbations (S & 0), so the instability growth
rate is

8 (1 —8)) —E .
16

(23)

In the dimensional variables the instability growth rate is

JS —1 uf F. (Tp —T()
16 g2 T2

(24)

The exact solution for the instability growth rate differs
from the result (1) by the factor J5 —1. Thus even for
the limiting case of large activation energy, solution in
the discontinuity model differs from the exact solution. It
is very likely that for the case of finite activation energy
the difference between the exact solution and the solution
obtained in the discontinuity model will be much more
pronounced.

1999



VOLUME 73, NUMBER 14 PHYSICAL REVIE% LETTERS 3 OCTOBER 1994

Authors wish to thank the Royal Swedish Academy of
Sciences for the support of this work (Grant No. 1482).

[I] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich,
and G. M. Makhviladze, The Mathematical Theory of
Combustion and Explosion (Consultants Bureau, New
York, 1985).

[2] F. A. Williams, Combustion Theory (Benjamin, Reading,
MA, 1985), 2nd ed.

[3] L. D. Landau, Zh. Eksp. Teor. Fiz. 14, 240 (1944); L. D.
Landau and E.M. Lifshitz, Fluid Mechanics, (Pergamon,
Oxford, 1987).

[4] G. Darrieus, Propagation d'un Front de Flamme
(unpublished).

[5] G. I. Barenblatt, Ya. B. Zel'dovich, and A. G. Istratov,

Prikl. Mekh. Tekh. Viz. 4, 21 I, 1962'.
[6] G. M. Makhviladze and B.V. Novozhilov, Prikl. Mech.

Tekn. Fiz. 5, 51 (1971).
[7] E. I. Maksimov and K. G. Shkadinsky, Phys. Comb. Expl.

7, 454 ('1971').

[8] B.J. Matkovsky and G. I. Sivashinsky, SIAM J. Appi.
Math. 35, 465 (1978).

[9] M. A. Liberman and A. L. Velikovich, Physics of 5hocl
Waves in Gases and P/asmas (Springer-Verlag, Berlin,
1985~.

[10] M. A. Liberman, V. V. Bychkov, S.M. Golberg, and D. L.
Book, Phys. Rev. E 49, 445 (1994).

[11] E. I. Maksimov, A. G. Merzhanov, and V. M. Shkiro.
Comb. Expl. Shock Waves 1, 15 (1965).

[12] L. D. Landau and E.M. Lifshitz, Quantum Mechanics
(Pergamon Press, Oxford, 1976), 3rd ed.

2000


