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Limitation of the Magnetic-Circular-Dichroism Spin Sum Rule for Transition Metals
and Importance of the Magnetic Dipole Term
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Magnetic-circular-dichroism (MCD) spectra and the spin magnetic dipole term ((T,)) for bulk 3d
transition metals and their surfaces were calculated from full potential linearized augmented plane wave
electronic band structure results. The recently proposed MCD spin sum rule is found to result in a
much larger error [of up to 50% for the Ni(001) surface] than does its orbital counterpart. In support
of recent experiments for bulk, we find that by combining the MCD orbital and spin sum rules the ratio
of spin and orbital moments can be determined from the MCD spectra even for low dimension systems
with an error of 10% when the (T„.) contribution is included.

PACS numbers: 78.70.Dm, 78.20.Ls

The possibility to determine both the orbital and spin
moments (denoted as (L,) and (S,), respectively) directly
from x-ray magnetic-circular-dichroism (MCD) [1—3]
spectra by applying recently proposed simple but powerful
MCD sum rules [4,5] has attracted considerable excite-
ment and attention [6,7]. Since these sum rules have been
derived from a single ion model, their validity for complex
materials (e.g., transition metals) with strong multishell
hybridization (excluded in the original derivation [4,5])
needs to be verified. We have previously confirmed the
validity of the MCD orbital sum rule to within 10% for
Fe systems in both ground and core-excited states within
the local density energy band approach in which all the
complexities of real materials are included [8]. In this
Letter, we determine the MCD spectra for bulk Fe, Co,
and Ni and their surfaces using state of the art local density
energy band results and demonstrate that the effects from
s, p states become much more important for the more
recently derived MCD spin sum rule, which results in
a large error to as much as about 50% for the Ni(001)
surface. Instead, the ratio of spin and orbital moments
can be determined even for reduced dimensional systems
from the MCD spectra with an error of 10% by combining
the MCD spin and orbital sum rules —as found in a recent

experiment for bulk transition metals [9]. Significantly,
we show for the first time that the directly calculated spin
magnetic dipole term, which is an intrinsic part of the
spin sum rule, is indeed important for atoms in a noncubic
environment, such as at surfaces and interfaces.

As is well known, MCD measures the difference in
absorption cross sections between left (o.+) and right
(o. ) circularly polarized incident light at inner shell
absorption edges in magnetic materials during the process
of electric transitions from core states (i.e., 2p for Lq and

L2 transitions in 3d transition metals) to the unoccupied
valence states. As stated in the MCD sum rules [4,5],
integrations of the MCD and total absorption spectra
relate directly to (L,), (S,), and (T,) for the unoccupied
states
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where o. = o.+ —o. and o., =o.++ o. + o, I is the
1

spin magnetic dipole operator, i.e., T = 2[S —3r(r" S)],
[T, = S,(1 —3 cos2 8)/2 for S aligned along the z direc-
tion]. The number of valence holes, Nh, can be obtained
from an integration over the unoccupied density of states
[p(E)]

Before describing the first principles results, help-
ful physical insights can be obtained from a simple
spin-orbit coupling perturbation model (Hsoc = gL ' S).
Listed in Table I are the values of o.„o.„o. , L„
T, , and S, calculated analytically up to first order in

for the Slater-Koster d and s basis with minor-

ity spin (S, = —1). Here, Rd and R, denote the ra-

dial parts of the momentum matrix elements for d and

s states, respectively; and a =
21+ ~, 1

and p =

z~~„~„~. For d states, and independent of their angu-

lar momentum wave function character, we found the re-
lations: (i) cr, = ~'; (ii) o, = PL, t, o. = —,' —,"; and
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FIG. 1. The calculated energy dependence of f, Rd, and R,
for the Ni(001) surface layer.

(iii) a, = o I., —2o. L, = 5'S, . From (i) and (ii), we

obtain the MCD orbital sum rule Eq. (1) [4] if only the d
states are involved. Obviously, (i) and (iii) demonstrate
the proportionality between the numerators and denomi-
nators on both sides of Eq. (2) for each d state and thus

the MCD spin sum rule [5] is also a natural result of this

simple single atom in a crystal field model.
Obviously, the validity of the sum rules is based on two

assumptions: (i) the values of g, Rd, and R, are energy
independent, and (ii) there is no intershell hybridization,
i.e., I is a good quantum number. It is known that
both of these assumptions fail in real solids due to
interatomic interactions. First, the wave function of a
bonding state (lower in energy, with strong amplitude in

the intermediate region between neighbors) has a larger
spatial extension than that of an antibonding state (higher
in energy, with a node in the intermediate region between
neighbors). It turns out that the calculated Rd and g for
Ni shown in Fig. 1 increase almost linearly by as much
as about 30% from the bottom to the top of the d band
and track each other perfectly in the whole energy range.
This proportionality ensures the almost perfect tracking
between cr and L, shown in Fig. 2(a) for the Ni(001)
surface layer since (i) L, is proportional to $ and o. is
proportional to Rd, and (ii) the s, p states contribute to
neither cr nor L, .

By contrast, for the spin sum rule, while the contri-
butions from d states to I, and I, (Ix Rd) are enhanced
monotonically from the bottom to the top of the d band,
each state (even s, p states) contributes equally to (S,) and

Nz independent of its energy. In addition, s, p contribu-
tions to I, and I, are almost negligible because, as shown
in Fig. 1, R, is much smaller in magnitude (by 50—60
times) than Rd. As a result, while the calculated o., and

S, for the Ni(001) surface layer in Fig. 2(b) track each
other somewhat less well than do cr and L„although
their proportionality still appears to hold. Much larger
deviations can be found in Fig. 2(c) between p(E) and o.,
due to either the effects of s, p states (above 0.5 eV) and
the energy dependence of Rd (below —1.3 eV).
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FIG. 2. The calculated energy dependencies of (a) L, and o
(b) o., and S„and (c) o, and p(E) for the Ni(001) surface
layer. Zero energy denotes the position of EF.

To examine in detail the possible validity of the spin
sum rule, we carried out the energy integrations for the
numerators and denominators of Eq. (2). As before [8],
an upper integration limit of 6 eV above FF is adopted for
the integrals. The lower-limit of the integrations, i.e., EF,
is employed as a parameter with zero denoting the posi-
tion of the real Fermi level. The calculated results for I„
Nq, I„and (S,) are plotted in Fig. 3(a) for the Ni surface
layer. The scaling factor (y) for I, and I„which is ob-
tained by fitting a linear function of o. = yL, /2, is 12.0
for Ni. This factor decreases for Co (y = 11.1) and Fe
(y = 10.0), however, it is insensitive to changes in envi-
ronment for a given transition metal as found in our recent
calculations for interfaces such as Co/Pd(001). For the de-
nominators, the Nh and I, curves exhibit a clear separation
even from 3 eV above EF due to the accumulation of the
deviation between p(E) and o., in the higher energy region
[cf. Fig. 2(c)]. This result indicates the importance of the
high-lying s, p states. Quantitatively, as denoted in Ta-
ble II by R& = I*/ ~'„—1, the application of the spin sum
rule results in much larger errors, up to 52% for the Ni sur-
face.

Obviously, the hybridization between different I shells
is the main mechanism causing the failure of the MCD
spin sum rule for the transition metals. This can be
seen from Fig. 3(b), where all the quantities presented in
Fig. 3(a) were recalculated without s, p contributions. In
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FIG. 3. The calculated energy dependencies of Nq and I, (left
scale) and 1„(T,), and (S,) (right scale) for the Ni(001) surface
layer from (a) all states and (b) d states only. Zero energy
denotes the position of EF.

such a model situation, the agreement between I, and Nh

and I, and (S,) becomes much better, especially in the

energy range above EF. As a result, the error of the MCD
spin sum rule can be reduced to within 10% even for the
Ni surface. Note that the s, p effects are a serious problem
not only for Ni, but also for Co and even Fe. We found
that the ratio between the numbers of s, p and d holes
can be 40%—50% for Ni systems, and remains as much as
20% and 15% for Co and Fe, respectively. For Co and Fe,
as also listed in Table II, the errors of the MCD spin sum
rule are still sizable —up to 25% and 15%, respectively.
Furthermore, the energy dependence of Rz also brings in
some additional errors for Fe.

We have previously [8] emphasized the need for proper
energy cutoff for the integrations in order to eliminate the
error introduced by the high lying energy states. Further,
since I and (L ) were found to be strictly proportional,
we suggested the use of absolute absorption cross-section
measurements as a means to eliminate errors introduced

by the denominators in the orbital sum rule. Now as
shown above, it is again the errors in the denominators
that cause most of the error in the spin sum rule.
Thus, another way to eliminate the errors due to the
denominators is to combine the (L,) and (S,) sum rules, as
was done recently in some experiments on bulk transition
metals [9]. We indeed find that the applicability of the
MCD sum rules can be improved by combining Eqs. (1)
and (2) as

I„, (L„.)
I, 2(S )

From our first principles calculations, we found that the

error for Eq. (3), denoted in Table II by Rz = —, /(s')—
1, is now 10% or so for all systems studied. Unfortu-
nately, Eq. (3) cannot provide (L.-) and (S,) separately,
but only their ratio. One may argue that (S,) can be con-
sidered to be known or can be obtained easily using other
techniques by assuming that (i) the (S,) for the unoccu
pied states is equal in magnitude to the usual spin mag-
netic moment (S,') for the occupied states and (ii) the T,
term is negligible. In fact, (S,) is not necessarily equal
to (S,') due to the induced s, p magnetization; the calcu-
lated (S,) is usually about 5% smaller than (S',), especially
for Fe.

For the (T,) term, we found from Table I that, although
the sum of T, over the whole d band or over the t2g and

eg subsets (each separately degenerate in Oz symmetry) is
zero, the T, term is very large for each d state. Therefore,
the (T,) term is negligible only for atoms with cubic
symmetry (cf. Table II for "bulk" atoms labeled C). For
atoms in noncubic environments such as surfaces and

interfaces, T, should be a strong oscillatory function over
the d band. Indeed, as shown in Fig. 4, from the first

TABLE II. Calculated values of (L,), (S,), (T,), (S,), N„,
and sum rule errors R, = I'/ ~'„—1 and R2 = —,

"
/ 2s

—1 for
Ni(001), Co(0001), and Fe(001) surface (S) and bulklike center

(C) layers.

Atom (L,)' (S,) 7(T,) (S,) N„R, R,

T T0.
'I

I

0.0
N

-0.2

Ni(S) —0.069 —0.67 —0.082 —0.250 1.81 0.52 —0.10
Ni(C) —0.051 —0.62 —0.027 —0.215 1.66 0.36 —0.11

-0.6

S/3
7

----- 7T /3
L

Co(S) —0.090 —1.61
Co(C) —0.078 —1.52

0.240 —0.457 2.60 0.24 —0.09
0.014 —0.502 2.55 0.22 —0.10 -0..8 I j I I I I L

-5.0 -4.0 -3.0 -2 0 -1.0 0.0 1.0 2.0 3.0

Fe(S) —0.111 —2.71 0.230 —0.828 3.70 0.16 —0.04
Fe(C) —0.063 —2.10 0.028 —0.691 3.34 0.15 —0.09

'See Ref. [11].
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FIG. 4. The calculated energy dependencies of S, and T, for
the Ni(001) surface layer. Zero energy denotes the position of
EF.
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principles FLAPW results for S, and T, obtained for the
Ni surface, the amplitude of 7T, /3 is almost as large as
S,/3. Obviously, the proportionality established between
o., and S, in Fig. 2(b) will fail completely without T, .
Even the integrated value of 7(T,)/3, shown in Fig. 3, is
clearly not negligible at the Ni surface. Quantitatively, as
seen from Table II, while the (T, ) term remains small for
bulk atoms, its importance is obvious at surfaces since its
magnitude becomes 8.5%, 12%, and 15% of (S,) at EF
for Fe(001), Ni(001), and Co(0001), respectively. Thus,
first principles determinations of both the MCD spectra
and ground state properties (e.g., S, and T„etc.) are
necessary for interpreting experimental results on surfaces
and interfaces using Eq. (3).
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