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We study the critical exponents of the superconducting phase transition in the context of
renormalization group theory starting from a dual formulation of the Ginzburg-Landau theory. The dual
formulation describes a loop gas of Abrikosov flux tubes which proliferate when the critical temperature
is approached from below. In contrast to the Ginzburg-Landau theory, it has a spontaneously broken
global symmetry and possesses an infrared stable fixed point. The exponents coincide with those of a

superfluid with reversed temperature axis.
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In a recent paper we have pointed out the advantage of
using a dual formulation of the Ginzburg-Landau theory
to describe the superconducting phase transition in three
space dimensions (D = 3) [1]. The theory is a contin-
uum version of a lattice model put forward some time
ago by one of the present authors to study this transi-
tion as well as the tricritical point [2]. Recently, Kovner,
Kurzepa, and Rosenstein [3] argued that the continuum
model could account for all fixed points which one expects
in the Ginzburg-Landau theory, not just the infrared fixed
point. It focuses on the Abrikosov flux tubes in the the-
ory, which carry magnetic flux rather than the electrically
charged Cooper pairs. Whereas the Ginzburg-Landau the-
ory features a local U(1) gauge symmetry; the dual theory
involves only a global U(1) symmetry. To understand the
relevance of this difference, we recall that a basic element
of Landau’s theory of continuous phase transitions is the
presence of an order parameter. When this parameter de-
velops an expectation value, which happens at the critical
temperature, some global symmetry is broken. For a local
symmetry no order parameter exists in the sense of Landau,
implying that such a symmetry can never be broken [4].
A gauge theory seems consequently not appropriate to de-
scribe a second-order phase transition. This may explain
why an infrared stable fixed point has never been found
within the Ginzburg-Landau formulation of the supercon-
ducting phase transition [5,6], although it is accepted that
the transition is of second order in the type-II regime, and
thus should possess such a point.

Following a suggestion by Helfrich and Miiller [7],
Dasgupta and Halperin [8] simulated a lattice model to
study the problem. With help of a dual transformation
[9,10] they found for a whole range of parameters a second-
order phase transition with superfluid exponents. One of
us [11] succeeded in mapping, via a duality transformation,
the lattice Ginzburg-Landau theory onto a ly]* theory, and
was able to obtain the complete phase diagram analytically.
In particular, he predicted the existence and located the
position of a tricritical point.

The dual formulation of the Ginzburg-Landau theory has
a global U(1) symmetry, which is spontaneously broken
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when the system crosses from the superconducting into
the normal phase. That is, in contrast to the Ginzburg-
Landau theory itself, the dual formulation possesses an
order parameter to describe the phase transition. To
understand the symmetry involved, we interpret the three-
dimensional theory as one in two space and one time
dimensions. This allows us to make use of results obtained
by Kovner and Rosenstein in part in collaboration with
Eliezer for scalar QED in 2 + 1 dimensions [12]. They
pointed out that the relevant symmetry for the Coulomb-
Higgs phase transition in scalar QED, which corresponds
to the superconducting phase transition in the Ginzburg-
Landau theory, is the global U(1) symmetry generated by
the magnetic flux ® = [d2x Fy. Here, Fy is the zero
component of the dual field strength

Fu = e,u.w\aVA/\s (1)

with €,,) (1, v, A = 0, 1,2) being the antisymmetric Levi-
Civita symbol and A, the electromagnetic gauge potential.
This symmetry is referred to as magnetic flux symmetry.
In the phase where the photon is massless, corresponding to
the high-temperature phase of a superconductor, the mag-
netic flux symmetry is broken. The resulting Goldstone
particle is the photon. (It should be noted that in 2 + 1
dimensions the photon has only one transverse direction
and thus only one degree of freedom, just like a scalar par-
ticle.) In the Higgs or superconducting phase the magnetic
flux symmetry is unbroken.

The current associated with the flux symmetry is
the dual field strength F,. When written in terms of
the gauge potential—as in Eq. (1)—this current is a
topological current which is trivially conserved due to the
presence of the € symbol. In the dual description, this
symmetry becomes explicit and the associated current is a
genuine Noether current.

The dual theory of a 3D superconductor, which is
defined by the bare Hamiltonian [1-3]

Hyo =(3: — igoho)wol’ + milgol® + uolwol*

1
+ 5 (U x ho)* + %mﬁ,oh% Q)
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describes a complex scalar field ¢, with mass parameter
my and a contact interaction uolgol®. It is minimally
coupled to a massive vector field ho;, i = 1,2,3, with
a coupling constant go = (277 /eg)ma9, Where eg is the
electric charge of the scalar field in the Ginzburg-Landau
theory. The vector field has the same mass muo as the
electromagnetic gauge field in the superconducting phase
of the Ginzburg-Landau theory. Since hg; is massive, the
theory lacks local gauge symmetry. We have scaled the
coupling constants and the fields in such a way that no
explicit temperature dependence appears in the partition
function Z, which is described by the functional integral

Z = | Dho; Dy Dyoexp|— | dxHypo), (3)
4

where the field hy is treated as an independent fluctuating
field.

To acquire an intuitive understanding of the dual
theory, we picture an Abrikosov flux tube as a linelike
object carrying one unit of magnetic flux. The scalar field
o gives a field theoretic description of a loop gas of these
objects, i.e., of closed magnetic flux tubes. Their mass m
physically represents the energy per unit length of a flux
tube. This construct applies, of course, only to type-II
superconductors; for type-I superconductors no stable flux
tubes exist. The coupling to the vector field hg; accounts
for the fact that the flux loops carry magnetic flux. In
fact, ho represents the microscopic or local field.

In the Ginzburg-Landau theory, the local field becomes
singular at the lines representing the loops. In the
spirit of Dirac [13], these singularities are subtracted by
introducing a plastic tensor hﬁD [14], which is a singular
field that yields a & function along the flux loops. The
physical local field is now given by (V X A); — Kt
which is everywhere regular. In the dual description, this
combination is represented by hg;; the plastic tensor hf
itself is represented by the Noether current j; = Yo —
2ighiy™ .

Although at first sight a theory such as (2) with a mas-
sive vector field looks perturbatively nonrenormalizable
in four dimensions (D = 4) [15], a closer inspection re-
veals that it is renormalizable [16]. We therefore can
apply usual perturbation theory to calculate the critical
exponents. The derivation of the dual theory (2) from
the Ginzburg-Landau model hinged on the fact that the
number of dimensions is three, so that the dual object
€;jx9;Ax is a vector. In other words, the dual theory de-
scribes the superconducting phase transition only in three
dimensions. For this reason, we study the model in fixed
(D = 3) dimension and not in D = 4 — e dimensions as
is often done. The fixed-dimension approach to critical
phenomena was introduced by Parisi, who applied it to a
pure |¢|* theory [17]. The method makes explicit use of
the fact that near the critical point the system has only one
relevant length scale, viz., the correlation length which di-
verges at this point. This length is used to convert dimen-
sionful coupling constants into dimensionless ones.

1976

In the present setting, the field ¢ develops an expec-
tation value when the critical temperature is approached
from below, indicating the occurence of a flux tube con-
densate. So the relevant scale is the (renormalized) in-
verse mass m~!. (The bare mass vanishes as mi ~
T. — T at the critical temperature 7,..) Of course, since
the mass of the vector field is identified with the photon
mass it also vanishes at the transition temperature. As we
know from the Ginzburg-Landau theory, the bare mass
vanishes as mfw ~ T. — T. However, the (renormalized)
penetration length m; ' should not constitute an indepen-
dent diverging length scale. We will see below that this is
indeed the case in the dual theory. A last point to note is
that the bare coupling g also tends to zero when T 1 T.,.
That is, at the tree level the vector field decouples from
the theory in this limit and we are left with a pure lg]*
theory. As usual, we compute the critical exponents in
the symmetric phase of the model, which in the present
context corresponds to the superconducting phase.

To facilitate the study of the model we follow Ref. [3]
and perform the transformation

— exp(z‘go o ho.i) @)

in order to decouple the longitudinal part of the vector
field from the field ¢ describing the flux loops. This
part is irrelevant for the critical exponents and will be
henceforth ignored. We next write the Hamiltonian (2) as
a sum of the renormalized Hamiltonian H which is given
by (2) without the zeros, and counterterms 6 H

SH =(z, — 1)18; — igh)wl* + (Zymi — m*) |yl

+ wZe — D lgol* + é(zh ~ (VX h)?

1
+ E(Z,Jn,%,0 — m} )%, 5)
The renormalized objects are related to the bare ones via
~1/2 1/2
hi=2y"hoi. & =28,

v =2,"w0, u=2;"Zu. ©®)

A few remarks are in order [16]. First, the same
Ward identities operate as in the case of a massless
vector field. This implies that the minimal coupling
to the vector field is preserved when loop corrections
are taken into account. We used this observation in
writing the relation between the bare and renormalized
coupling g. Second, the contributions to the self-energy
of the vector field are transverse. The mass term of the
vector field is consequently not renormalized and does
not need a counterterm. In other words, m, = Z,l,/ zmA,o‘
It also follows that the exponent vy, is unaffected by
the fluctuations and retains its mean-field value y, = 1.
Incidentally, the electric charge does not renormalize in
the dual theory since g = (27 /e)m, and both g and m,
renormalize in the same manner.
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We now come to an important observation related to
the fact that in the dual theory m, plays the role of a
mass as well as of a coupling constant. The standard
definition of the critical exponent » which determines how
the correlation length m~! diverges when the temperature
approaches T.: m~! ~ (T, — T)™?, viz.,

1 _9ln (md) D
v dln(m) ’
can in our case be rewritten as follows:
dmj o _ m 0 ®)
3 In(m) v’

because m3 ~ m,z,_o near 7.. We use this to cast the B
function, which is defined by the equation

, 9 g’
B@EY =m-— &
m m

, ®

u“o0.80

with the properly scaled coupling constant g2 := g2/m, in
the form

1 dlIn(m
B2 = gz(—l + — + yu(g%a) 3 In(ma) ")). 10)
14 nim
Here, v,,(82%, ), with & := u/m, is the function

A2 A )
Yh(gzs u) =my m ln(Zh) |u0,g0 > (11)

which yields the critical exponent 7, when evaluated at
the critical point. Without the explicit mass dependence,
the coefficient of the g2 term in the B(§2) function would
be —1, implying that the origin is an ultraviolet stable
fixed point. In (10), however, the coefficientis —1 + 1/v
which is positive if » < 1. In this case, the origin
becomes infrared stable and the coupled theory reduces
to a pure |¢|* theory. The best estimate for » available
from summed perturbation theory at fixed D = 3 [15]
gives v = 0.6695, which is smaller than 1. Hence, the
trivial fixed point §*? = 0 is infrared stable. This situation
differs dramatically from that in the Ginzburg-Landau
theory where the coupling e to the vector field has an
infrared stable fixed point away from the origin and the
corresponding value &*? is too large to allow the coupled
system to develop an infrared stable fixed point.

To recapitulate, the dual theory of the superconducting
phase transition possesses an infrared stable fixed point
given by 2*2 =0 and #* = @wr, where W is the
Wilson-Fisher fixed point of a pure |¢|* theory with
reversed temperature axis. The critical exponents of
the ¢ field are the ones of a superfluid. Since m
represents the energy per unit length of an Abrikosov
flux tube, the exponent » indicates how the tension of
these tubes vanishes when the critical point is approached.
The critical exponents pertaining to the h field, which
physically represents the fluctuating local magnetic field,
have their mean-field values. In particular, v, = %
Since m, is the photon mass, this exponent reveals
that the magnetic penetration depth diverges near T,

as (T. — T)~Y/2, meaning that inside the critical region
the empirical formula m;' ~[1 — (T/T.)*]"'/? found
outside this region remains unchanged.

A last point of interest is the Gaussian fixed point, corre-
sponding to §*> = 0, #* = 0. This fixed point is infrared
stable in the 22 direction and unstable in the # direction. It
describes a theory of vortex loops with a vanishing quartic
coupling. In the Ginzburg-Landau picture, this amounts to
the situation where the electromagnetic repulsion between
two flux tubes precisely balances the attraction mediated
by the Higgs particle. This happens when the phase tran-
sition changes from second to first order, i.e., at the tri-
critical point [2]. At the level we are working, the critical
exponents characterizing the tricritical point are Gaussian.
A |¢[° term which should be included now will generate
logarithmic corrections.

We hope that this Letter initiates experimental effort
to study the critical behavior of superconductors. For
conventional superconductors, the critical region is too
small to be probed experimentally. In high-7, materials,
on the other hand, the critical region |T — T.|/T. ~ 1072
is large enough to make this study feasible.

[1] M. Kiometzis and A.M.J. Schakel, Int. J. Mod. Phys. B
7, 4271 (1993).

[2] H. Kleinert, Gauge Fields in Condensed Matter (World
Scientific, Singapore, 1989), Vol. 1.

[3] A. Kovner, P. Kurzepa, and B. Rosenstein, Mod. Phys.
Lett. A 8, 1343 (1993).

[4] S. Elitzur, Phys. Rev. D 12, 3978 (1975).

[5] B.1. Halperin, T.C. Lubensky, and S. Ma, Phys. Rev.
Lett. 32, 292 (1974).

[6] H. Kleinert and A.M.J. Schakel (unpublished).

[71 W. Helfrich and W. Miiller, in Continuum Models of
Discrete Systems (University of Waterloo Press, Waterloo,
Ontario, Canada, 1980), p. 753.

[8] C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556
(1981).

[9] M. Peskin, Ann. Phys. (N.Y.) 113, 122 (1978).

[10] P.R. Thomas and M. Stone, Nucl. Phys. B144, 513
(1978).

[11] H. Kleinert, Lett. Nuovo Cimento 35, 405 (1982).

[12] A. Kovner, B. Rosenstein, and D. Eliezer, Mod. Phys.
Lett. A 5, 2733 (1990); Nucl. Phys. B350, 325 (1991);
A. Kovner and B. Rosenstein, Phys. Rev. Lett. 67, 1490
(1991).

[13] P. A.M. Dirac, Phys. Rev. 74, 817 (1948).

[14] H. Kleinert, Mod. Phys. Lett. A 7, 4693 (1992), see also
Ref. [2], Vol. 2.

[15] J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Oxford University Press, Oxford, 1989).

[16] J.C. Collins, Renormalization (Cambridge University
Press, Cambridge, 1984).

[17] G. Parisi (unpublished); J. Stat. Phys. 23, 23 (1980);
Statistical Field Theory (Addison-Wesley, New-York,
1988), Chap. 8.

1977



