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Nonlinear Conductance for the Two Channel Anderson Model
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Using the integral equations of the noncrossing approximation, the differential conductance is
computed as a function of voltage for scattering from a two channel Kondo impurity in a point contact.
The results compare well to experimental data on Cu point contacts by Ralph and Buhrman. They
support a recently proposed scaling hypothesis, and also show finite temperature corrections to scaling
in agreement with experiment.

PACS numbers: 72.10.-d, 63.50.+x

The two channel Kondo model [1], or equivalently
the Kondo limit of the two channel Anderson model
[2], has been applied to a wide variety of interesting
physical systems: heavy fermion compounds [3,4], high-

T, superconductors [5], and two level systems (TLS) in
metals [6—9]. Although this model contains many of
the salient features of the experiments, e.g. , marginal-
Fermi-liquid behavior [S.IO], the experimental proof for
the physical existence of two channel Kondo impurities is
far from certain.

One of the strongest experimental cases for the exis-
tence of two channel Kondo behavior is an experiment
by Ralph and Buluman [8] on clean Cu point contacts.
At low temperatures T, the conductance of their samples
shows the correct T, magnetic field, and voltage depen-
dence for a two channel Kondo impurity such as a TLS
with electron assisted tunneling. Recently [9], the data
have also been shown to be consistent with a scaling
ansatz motivated by the equilibriutn conformal field the-

ory (CI I') solution of the problem [11]. However, in or-
der to verify the above hypothesis and to compare directly
with experiment a nonequilibrium solution of the prob-
lem is required. In this paper we compute the differen-
tial conductance for a two channel Kondo impurity in a
point contact for the experimental nonequilibrium situ-
ation. As seen below the good quantitative agreement
with experiment lends strong evidence for the existence of
two channel Kondo impurities in the samples of Ref. [8].

Generally, the M channel Kondo model consists of M
kinds or channels of mutually noninteracting conduction
electrons which are coupled to a system of N = 2
degenerate states via an exchange interaction [1]. In the
case of interest here [8], the TLS presumably consists of
the even and odd parity states of a defect atom bound in
a symmetric double well potential; however, the actual
physical realization of this TLS is inessential for the
Kondo effect to occur. Parity plays the role of the active
degree of freedom altered by the interaction, while the
physical spin is a spectator degree of freedom, which
is conserved by the interaction and which constitutes the
M = 2 channels of the model [6].

It is convenient to represent this system by an Ander-
son Hamiltonian of a particle on an impurity level far be-
low the Fermi surface hybridizing with the two channels
of conduction electrons. Although the Anderson Hamil-
tonian does not explicitly represent the atomic tunneling
system described above, both models belong to the same
universality class and may be mapped onto each other in
the Kondo limit by means of a Schrieffer-Wolff transfor-
mation, so that the model parameters may be identified.
In slave boson representation [12],our Hamiltonian reads
(we follow the notation of Ref. [13])

H = 6p —P,~ cp~~c ~~ + 6d
P,Cr, r, ol

+ g U (ftb c„,+ H.c-.), (1)
p, o,T~ct'

where the first term describes the conduction electron
bands labeled by their parity r and their channel index,
spin cr. In the presence of an external voltage V, the
conduction electrons to the left and right of the junction
also have different chemical potentials p, , n = L, R.
The second and third terms describe the core level eq and
the hybridization terms, respectively, where f and b are
the slave fermion and slave boson operators. The physical
particle operator on the impurity is represented by d~ =

ftb , supplemented -by the constraint P, ftf, +
g- b~b =1. -

We compute the differential conductance within the
noncrossing approximation (NCA) for the infinite U An-
derson model in the Kondo limit [14—16]. The NCA has
been very successful in describing the one channel Kondo
problem except for the appearance of spurious nonanalytic
behavior at a temperature far below the Kondo tempera-
ture T~. These spurious low-T properties are due to the
fact that the NCA neglects vertex corrections responsi-
ble for restoring the low-T Fermi liquid behavior of the
one channel model [17]. However, it has recently been
shown [13] that for the two channel problem, where the
complications of the appearance of a Fermi liquid fixed
point are not present, the NCA does give the exact low-
frequency power law behavior of the impurity spectral
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function Aq(cu) at zero T. Therefore, we expect to achieve
a correct description for quantities involving Az (like the
conductance).

In order to calculate the conductance at finite bias, the
NCA must be generalized using nonequilibrium Green
functions [18]. One solves for both the retarded Green
functions for these operators, Gf and Gb, and for the
"lesser" Green functions Gf~ and G~, which contain in-
formation about the nonequilibrium distribution function.
The derivation of the integral equations for these four func-
tions follows the work of Meir, Wingreen, and Lee [19].

In a point contact the Kondo effect is governed by
the couplings of the impurity to left and right mov-
ing electrons I L and I ~, normalized to the width
I' = m[(UL + Uq)/2] N(0) of the bare Anderson im-

purity level [15] (I L + I &
= 1). Motivated by the

symmetry of the experimental conductance-voltage curves
we conclude that the system is symmetric under the total
parity operation V —V, I L I rr, i.e., I'L = I z [20].
Letting F,«(~) = I'r. F(cu + eV/2) + 1 rrF(ar —eV/2),
where F(cu) = 1/(1 + e~ ), and using the conventions
of Miiller-Hartmann [15] for the spectral functions,
A(co) = ImGf(—cu)/n, B(cu).= —ImG„(ar)/n. , and the
lesser Green functions, a(cu) = ImGf (cu)/2n. and

b(ar) = ImG&b(cu)/2m. , the nonequilibrium NCA equa-
tions for the N = 2, M = 2 Anderson model are [21]

= I'N A(ar + e)F, (e), (2)
B(cu) d e

7T

A(cu) de
)Gf(a))P 'n.= I M B( —t. )[1 —F„( )],

sisted by electrons hopping on impurities in the junction,
increasing the conductance. Thus, it is not surprising that
when we generalize earlier calculations for the nonlinear
current through a tunnel junction [23,24] to the case of a
point contact, we find a similar expression for the current,
except for an overall minus sign:

I —I() ~— dc@ A~(a))[F(cu —V/2) —F(cu + V/2)],

(7)

G(0, T) —G(0, 0) = BET'/2

The experimental data also show a T'~2 dependence, but
it is difficult to deduce an accurate estimate of T& by

where I and Io are the currents with and without the impu-
rity. In deriving Eq. (7) we have assumed that the point
contact is clean, namely the transmission coefficients are
close to unity, and that all hopping matrix elements are
slowly varying on the scale of T&. The conductance
G(V, T) is computed by taking a numerical derivative,
dI/dV. We will assume that the background conductance
dlo/dV is Ohmic.

In Fig. 1 we show the zero bias conductance, G(0, T),
computed in this manner (I L = I R). As expected [11],
the conductance shows a T'~ dependence at low T with
deviations starting at about 4T». T» is determined by the
width at half maximum of the zero bias impurity spectral
function Aq at the lowest calculated r (see inset). The
slope of the T'~ behavior defines the constant By.

&
= I'N a(cu + e)[1 —F,ff(E)],

b(cu) d e

7T
(4)

z
= I'M b(cu —e)F,rr(e), (5)

a(cu) d e
7T

where the real and imaginary parts of Gf and G„" are related
to each other by a Kramers-Kronig relation. %e have
solved Eqs. (2)—(5) numerically by iteration. Optimizing
the computational speed at the cost of computer memory,
we can substantially increase the number of iterations per
time and, subsequently, are able to go more than 2 orders
of magnitude lower in T [22] than shown in Ref. [19],deep
into the low T scaling regime described below. The true
impurity spectral function, Az, is computed from the slave
Green functions via the convolution
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Ag(cu) = [a(e)B(e —cu) + A(e)b(e —cu)]. (6)

A point contact consists of two leads joined by a small
constriction. Any additional scattering in the vicinity of
the constriction should cause a decrease in the conduc-
tance because it impedes the flow of electrons. On the
other hand, in a tunne1 junction, tunneling may be as-

FIG. 1. T dependence of the zero bias conductance C,
'I& =

I »). The zero bias conductance has rv2 dependence for
T ~ T»/4. This can be used to roughly extract T» from the
experimental data. Inset: The impurity spectral function A„(cu)
for several voltages. The width at half maximum of the zero
bias spectral function (dotted curve) determines r» As the.
voltage is increased to eV = k&T& the Kondo resonance is
reduced (solid curve). At very large bias the resonance shows
a shoulder and eventually two peaks. In this paper we compare
theory and experiment in the scaling regime, T && T~.
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looking at the deviations from T'/2 behavior (assuming

that they would occur at 4'). An educated guess gives
Tx = 8 K for samples 1 arid 2 and significantly less for
sample 3 of Ref. [9].

Recently, it has been proposed from a CE I' solution
of the problem in equilibrium that the experimental data
show scaling of the conductance G as a function of
voltage bias V and T of the form [9]

G(V, T) —G(0, T) = BzT' H A
kgT)

' (9)

where H is a universal scaling function [H(0) = 0 and

H(x) —x'/2 for x » 1] and Bz and A are nonuniversal
constants. In order to examine whether this ansatz is
correct, in Fig. 2 the rescaled conductance is plotted as
a function of (eV/AT)'/2 for the numerical data (a)
and the experitnental data [(b), for the best sample (1)].
Considering that after fixing Bx using Eq. (7) there are
no adjustable parameters, the agreement is quite good.
The collapse of the various T curves at low bias and
the linear behavior for the low T curves in the range of
2 & (eV/kBT)'/z & 4 is in agreement with the proposed
scaling ansatz Eq. (9). However, the slope of the linear
part shows T dependence for both the experimental and
the numerical data. This is not contradictory to the scaling
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FIG. 2. Scaling plots of the conductance for (a) theory and
(b) experiment [9]. With I L

= Ie and B~ determined from
the zero bias conductance (see Fig. I), there are no adjustable
parameters. There are roughly two regimes in these plots.
For (eV/ksT)' ~ & 1.5 the curves collapse onto a single curve
and the rescaled conductance is proportional to (eV/ksT)'.
For 2 & (eV/keT)' 2 & 4 the rescaled conductance is linear on
these plots. There are substantial corrections to scaling even at
T small compared to T» [see Fig. 3(b)]. At even larger biases
this linear behavior rounds off, indicating the breakdown of
scaling. The temperatures in the theory and experimental plots
are in units of T& and kelvin, respectively.

ansatz, but it does show that there are significant T
dependent corrections to scaling.

To analyze the scaling plots in more detail, the low bias
portion is replotted in Fig. 3(a). The conductance follows
an approximate (eV/ks T)2 behavior even for eV/ks T & 1

before it levels off and enters the (eV/ksT)'/2 region at
higher bias. The prefactor of the quadratic dependence
shows no observable T dependence until approximately
0.1T& and consequently obeys the scaling ansatz.

In Fig. 3(b) the slopes of the straight line fits of the
linear regions in Fig. 2 are plotted as a function of T.
Both the numerical data and the experiment show clear
T dependence. Although B~ may be determined directly
from the zero bias conductance, T~ is more difficult to
determine experimentally. In Fig. 3(b) we have chosen
values for T~ which are consistent with the estimates
from the deviation of the zero bias conductance from T'/2

behavior. The resulting curves are in good quantitative
agreement. In order to show that the experimental and
numerical curves indeed coincide (for a given T/Tx) we
also compare the intercepts of the straight line fits for the
same Tx's [inset Fig. 3(b)]. The numerical data do fall
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FIG. 3. Quantitative analysis of the scaling plots at (a) low
bias and (b) high bias. (a) The low bias rescaled conductance
as a function of (eV/ke T)' (curves are offset). Both theory and
experiment (sample 1 of Ref. [9]) show quadratic behavior at
low bias. The symbols correspond to the temperatures shown
in Fig. 2. (b) The slope of the straight line fits of the linear
region in Fig. 2 as a function of T for sample 1 (o,+), sample 2
(0, CI), sample 3 (X,*) (for V & 0, V & 0), and the numerical
data (6). The Tx for the experimental curves is consistent with
the deviation of the zero bias conductance from T'/' behavior.
All curves drop with increasing T even at T small compared
to the T&. The inset shows the behavior of the intercepts of
the fits.
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right in the middle of the scatter from the three different
samples. Note that our theory does not have the additional
parameter, A, of Eq. (9), but adjusting Ttt has some of the
same effect as adjusting A.

In determining the origin of the scaling behavior dis-

played in Eq. (9) it should not be overlooked that the same
scaling form could also arise from a quantum interference
effect between Coulomb interaction and scattering off de-
fects in a nanojunction [25]. If this were the case, the
characteristic temperature for scaling to set in would be
given by the impurity scattering rate. The experimental
value for the characteristic temperature of ~ 8 K would
then correspond to a mean free path of = 103 lattice con-
stants, far more than the size of the junctions of Ref. [8],
to which any defects in their clean samples would be con-
fined. Therefore, the above interference effect is ruled out
as a possible origin of the scaling behavior Eq. (9).

In conclusion, we have performed numerical evalu-
ations of the NCA integral equations for the two chan-

nel Anderson model out of equilibrium. We find very

good agreement with data from an experiment on Cu

point contacts [9]. Scaling of the conductance at low
bias (eV ( kBT) and T is verified. As V and T are in-

creased, the calculation exhibits finite-T corrections to
scaling, again in agreement with experiment. Quantum
interference between Coulomb and impurity scattering is
ruled out as a possible origin of the scaling behavior.
Thus, this work lends strong support to the existence of
two channel Kondo impurities in the Cu point contacts of
Ralph and Buhrman.
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