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Quantum Monte Carlo Calculations for Solids Using Special k Points Methods
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We describe a quantum Monte Carlo method for calculating the electronic properties of solids using
wave functions with nonzero wave vectors. Our method uses the idea of "special k points" derived
from band structure theory, and leads to greatly improved accuracy for insulating systems. We illustrate
our method with calculations on germanium in the diamond structure.
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Variational and diffusion quantum Monte Carlo (VMC
and DMC) methods have been used in a number of stud-
ies of electronic systems, such as atoms and molecules
[1],the homogeneous electron gas (jellium) [2], a jellium
surface [3],phases of solid hydrogen [4], and solids com-
posed of heavier atoms such as carbon [5] and silicon
[5,6]. The accuracy of a VMC calculation is ultimately
limited by the quality of the many-body wave function
used. DMC calculations can, in principle, give exact en-
ergies, but in practice the so-called fixed-node approxima-
tion [1,2] is normally used for large systems, in which the
nodal surface of the wave function is constrained to be
equal to that of an approximate wave function. In many
applications the fixed-node approximation has given ex-
cellent results, and the DMC technique is one of the most
promising methods for accurate calculations on many-
body electronic systems.

Calculations for solids have used a supercell method
with a many-body wave function satisfying periodic
boundary conditions, which reduces the problem to one
involving a finite number of electron coordinates [2—
6]. An extrapolation to infinite-supercell size is normally
required, which often involves using results from ap-
proximate methods, such as local-density-approximation
(LDA) calculations [3—6], which reduces the reliability of
the final results. In this paper we show that VMC and
DMC methods can be used in conjunction with many-
body wave functions which obey different boundary con-
ditions from the strictly periodic ones used in previous
calculations. Our method uses the ideas of "special"
k points [7—9], which have been widely used in band
structure calculations for insulating systems. For a given
supercell size our method gives energies and electronic
charge densities which are much closer to those of the
ground state of the truly infinite system than previous
VMC and DMC calculations. This development will al-
low VMC and DMC methods to be used with greater ac-
curacy in calculating the properties of complex solids.

The Hamiltonian employed in supercell many-body
calculations is of the form

N N
1

N

H = -—g V', +g g +g V(r,-),

where {Rjis the set of translation vectors of the supercell
lattice, V(r) has the periodicity of {R},and N is the num-

ber of electrons in the supercell. Both the Hamiltonian
H and the Hamiltonian of the truly infinite system are in-

variant under the simultaneous translation of all electron
coordinates by a translation vector of the crystal lattice.
However, 0 has the additional symmetry that it is invari-
ant under the translation of any electron coordinate by a
vector in {R). A proof [10] following similar lines to
the standard derivation of Bloch's theorem shows that the
translational symmetry of H implies that its eigenstates
can be chosen to be of the form

( N

4k({r;j) = Uk({r;))exp~ ik g r; ~.
)

(2)

In this expression k is a wave vector which can be
chosen to lie within the first Brillouin zone (BZ) of the
supercell lattice, and UI, is invariant under translation
of any electron coordinate by a vector in {R) [11]. In
general U~ is complex, unless k = 0, in which case Ua,

can be chosen to be real. Previous VMC and DMC
calculations for solids have used k = 0 wave functions;
however, we will show that it is possible to use wave
functions with nonzero k vectors, and that this freedom
can be used to improve the accuracy of the calculations
considerably. The ground state for the infinite-sized
supercell has k = 0, but this is not the case for a finite-
sized supercell, and we have constructed an explicit
example with N = 6 noninteracting electrons in a fixed
periodic potential where the ground state has k + 0 [10].
One could perform calculations at different wave vectors
for a number of purposes, but here our intention is to
choose wave vectors for which the lowest energy state
gives a good representation of the ground state of the
infinite-sized-supercell system.

Typically the approximate wave function used in VMC
calculations and the guiding wave function used in DMC
calculations for solids is chosen to be of the Slater-
Jastrow-Bijl form,

N N

4k ——exp —g g u()r; —rj —R() + g g(r;) D,
R i&j i=1

(3)
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where the function u(r) correlates the electrons in pairs,
g(r) is a one-body function, and D is a determinant
of single-particle states. g(r) is chosen to have the
periodicity of {R) (and any other symmetries of the
crystal) and the u term is invariant under any translation in
{R). Appropriate choices for u and g have been discussed
elsewhere [2—6], and in this paper we will mainly be
concerned with the choice of the single-particle states
from which the determinant D is constructed.

In order to study the properties of single-determinant
wave functions it is instructive to consider solutions of
the Schrodinger equation for the Hamiltonian H within
a self-consistent-field approach using the LDA for the
exchange-correlation energy. We have performed LDA
calculations for Ge in the diamond structure with the
experimental value of the cubic lattice constant of 5.65 k
To represent the Ge4+ ions we used a local pseudopotential
of Starkloff-Joannopoulos form [12]. The wave functions
and potentials were expanded in a plane-wave basis set
containing all waves up to a kinetic energy cutoff of
40 Ry. We considered 8 different sizes of supercell,
the smallest of which was the primitive cell containing
2 atoms, which we refer to as a 1 X 1 X 1 cell, and
the largest of which was obtained by multiplying the
primitive vectors by a factor of 8 to give a 8 x 8 x 8

cell containing 1024 atoms. Within the LDA the wave
function 4k is a determinant of single-particle states, each
of which has the same wave vector k, when reduced
into the BZ of the supercell lattice. In Fig. 1 we plot
the LDA energies for the 8 supercell sizes for 3 different
choices of wave vector k: k = 0, k = Giii/2 = (bi +
b2 + b3)/2, where the b; are the primitive-reciprocal-
lattice vectors of the supercell, and k = k~, where k~
is the Baldereschi mean-value point [7] of the supercell
BZ. From Fig. 1 we see that for the k = 0 sampling the

energy converges rather slowly with increasing supercell
size, in contrast to the k = Gi|i/2 sampling where the
convergence is much better, while the k = kg sampling is
slightly better again. Inspection of the Fourier components
of the charge density shows convergence following that
of the energy, as do the kinetic, electron-ion, Hartree, and
exchange-correlation terms. We conclude that, especially
for small supercells, a wave function with k = Gii i/2 or
k = k& gives a considerably better approximation to the
ground-state properties of the infinite-supercell Ge system
than a k = 0 wave function. This conclusion is entirely
in accord with many previous self-consistent-field studies.
Special k-points techniques give excellent results when

used in self-consistent-field studies of insulating systems,
while for metals the improvement over k = 0 sampling is
much smaller because of the presence of partially filled
bands. We expect the same considerations to apply to
the use of special k-points techniques in VMC and DMC
calculations.

For computational efficiency when performing the LDA
calculations we map the states in the supercell BZ into

that of the primitive cell. The resulting mesh of k
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FIG. 1. LDA energies in eV per atom for n x n X n su-
percells of diamond structure germanium. k = 0 sampling
(crosses), k = G», /2 = (bl + b2 + b3)/2 sampling (trian-
gles), where the b; are the primitive-reciprocal-lattice vectors
of the supercell, and k = k~ sampling (circles) where k~ is the
BaMereschi mean-value point of the supercell Brillouin zone.

points is of the same type as the sets of "special" k
points introduced by Monkhorst and Pack [8], although
we consider a mesh with an arbitrary offset from the
origin [9]. In fact the k = G»1/2 meshes that we use
for supercells which are even multiples of the primitive
cell (n x n x n cells with n even) are identical to
the corresponding n X n x n Monkhorst-Pack meshes,
while for odd multiples the offset from the origin leads
to a sampling which is superior to the corresponding
Monkhorst-Pack mesh. The k = k~ sampling of the
n & n X n supercell BZ gives a n X n X n mesh of k
points in the primitive BZ of Monkhorst-Pack type, but
offset from the origin by k&. This multipoint Baldereschi-

type special k points scheme, which allows accurate BZ
integrations to be performed with very small numbers of k
points, does not appear to have been used before, and may
be of use in self-consistent-field calculations, although it

generates sets of k points with low symmetry.
We now turn our attention to VMC calculations. Wave

functions of the form of Eq. (2) can be used straightfor-

wardly in VMC calculations. The VMC expression for
the energy, EvMc, is

(4)

where +k4k is a probability distribution, which is real
and positive, and +k '8@k is known as the local energy.
In a VMC calculation the probability distribution is

generated pointwise using a random walk procedure, and

the local energy is accumulated (after an equilibration

step) along the walk. For an arbitrary k vector the local

energy is complex at a general point along the walk, but

in the limit of exact sampling the imaginary parts cancel
from Eq. (4). If an electron coordinate is translated by
a vector R in the set {R] then the wave function 4k is
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multiplied by a phase factor exp(ik R), which leaves
both the probability distribution and the local energy
unaltered. It follows that the integrals in Eq. (4) need
be performed only over a single supercell in configuration
space, as is the case for k = 0 calculations. The only
additional complication which arises from using wave
functions of the form of Eq. (2) in a VMC calculation
(with an arbitrary nonzero k vector) is that in general one
must use complex arithmetic to evaluate the periodic part
of the wave function, Uk, which costs a factor of 4 more
in computing time than evaluating a real Uk.

A particularly advantageous choice is k = G/2, where
G is any supercell-reciprocal-lattice vector. We have
already seen that choosing k = G»&/2 for Ge gives ex-
cellent results within the LDA, even for small super-
cells, but another important advantage of using k = G/2
is that one can choose a wave function of the form of
Eqs. (2) and (3) with a single, real determinant. The
mesh generated by k = G/2, and all points which differ
from it by a supercell-reciprocal-lattice vector, is invari-
ant under inversion through the origin, and for a closed
shell configuration, it is therefore possible to form linear
combinations of the single-particle states which are real,
which can be used to form a real determinant. We have
tested this scheme by performing VMC calculations on
the 2X2X2 and 3X3X3 Ge supercells for k=0
and k = G»&/2 wave functions. For the two-body cor-
relation function u(r) we used a standard form which is
discussed, for instance, in Refs. [2] and [5], and which
yields the exact behavior when two electrons approach
one another, and gives the long-ranged behavior appro-
priate for a uniform system of the same average density.
The single-particle states were calculated within the LDA
and the one-body function g(r) was constructed using the
procedure of Ref. [5], which gives a charge density close
to the LDA form.

'

To obtain accurate statistics the aver-
ages were computed over 30000 configurations for both
the 2 X 2 X 2 and 3 X 3 X 3 systems.

The VMC energies are given in Table I, together with
the corresponding LDA results and the LDA finite-size
corrections, which are the differences between the LDA
result for a particular supercell size and wave vector,
and the LDA result for a very large supercell and a
40 Ry cutoff energy of —107.526 eV per atom (which is
independent of the wave vector; see Fig. 1). For both
supercell sizes the LDA finite-size correction using the
k = G|ii/2 wave functions is an order of magnitude
smaller than the correction for k = 0.

We now consider the case of DMC calculations. The
DMC expression for the energy is

f(+I,~'I ) (C'~ HC'~)

J(% „*4,)

where 4k is the guiding wave function and Wk is the
best wave function consistent with the nodal surface of

ED~c is real but, for an arbitrary k, the distribution
"@krak is complex and cannot be generated by the standard

DMC algorithm. We have not attempted to generate
this distribution by a modified algorithm, but instead we
have used the standard DMC algorithm with the (real)
k = 0 and k = G|ii/2 wave functions from the VMC
calculations as guiding functions, so that the distribution

is real and positive. The "tiling property" of
ground-state fermionic wave functions [13] guarantees
that all nodal cells of the wave function are equivalent and
therefore a DMC calculation may be performed within
a single nodal cell. It is straightforward to show that
the tiling property holds under the joint action of the
permutation and translational symmetry for the lowest-
energy wave function at each wave vector k = G/2
[10]. Finally, as for the VMC calculations described
earlier, all of the supercells in configuration space give
equal contributions to Eq. (5), and the integrals need be
performed only over a single supercell.

We have performed DMC calculations in the fixed-
node and short-time approximations for the same 2 x
2 X 2 and 3 X 3 X 3 Ge supercells as used in our VMC
calculations. We used a time step of 0.015 a.u. , which
is the same value as used in the study of Si by Li,
Ceperley, and Martin [6], who demonstrated that the
resultant time-step error was small in that case. The
average number of configurations in the ensemble was
200, and for each configuration 3000 moves of all the
electrons were attempted for the 2 X 2 X 2 calculations
and 500 moves for the 3 X 3 X 3 calculations. The fixed-
node approximation [1,2] was implemented by rejecting
any moves in which a node crossing was attempted [14].
The results of the DMC calculations are given in Table I.

The calculated VMC and DMC energies may be cor-
rected for finite-size effects by adding the appropriate
LDA corrections, ALDA, given in Table I. This procedure
yields energies which are very similar for the different k
samplings; however, the energies for the 2 X 2 X 2 super-
cells are 0.3—0.4 eV per atom lower than the 3 X 3 x 3
results. From this we deduce that (a) the LDA-finite-
size corrections work reasonably well for Ge in correct-
ing for the different k sampling at fixed supercell size,
and (b) there is an additional size-dependent correction
which is not included in the LDA. Conclusion (a) is to
be expected for Ge, where the LDA works well; how-
ever, the most important applications of quantum Monte
Carlo techniques will be to systems in which the LDA is
inadequate, and in these cases we do not have a reliable
scheme for calculating finite-size corrections, so that our
special k points method will be extremely valuable. VMC
calculations for jellium [15] indicate that the additional
size-dependent correction beyond the LDA is positive
for system sizes and electron densities comparable to
our Ge calculations, and that for a system compar-
able to our 3 X 3 X 3 calculations this correction is small
(- +0.1 eV per atom). When comparing with the LDA
results we must consider the effects of basis set incom-
pleteness in the LDA calculations. The LDA energies in
Table I were calculated using a 40 Ry basis set energy
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TABLE I. Energies of diamond structure germanium in eV per atom for the 2 && 2 x 2 and 3 x 3 x 3 supercells, using k = 0
and k = G, »/2 wave functions, and the LDA, VMC, and DMC methods. Estimated statistical errors in the last decimal digit are
given in brackets. Finite-size corrections, 5LDA, calculated within the I DA, are also given.

k=0

k = G, »/2

n Xnan

2X2X2
3X3X3
2X2X2
3x3x3

—106.08
-107.15

—107.40
—107.51

—106.05(2)
—106.81(5)
—107.49(2)
—107.28 (2)

—106.65(7)
—107.44(5)
—108.03(7)
—107.74(4)

—1.44
—0.38
—0.12
—0.02

cutoff. We have performed LDA calculations with var-
ious cutoffs up to 125 Ry, from which we deduce
that the infinite-basis-set LDA energies are approxi-
mately 0.12 eV per atom lower than those quoted in Ta-
ble I. The VMC energies are expected to be lowered by
a similar amount, but the DMC results are expected to be
insensitive to the basis set used for the guiding wave func-
tion, as shown in [6]. Our value for the fully converged
LDA energy of —107.65 eV per atom is very close to the
finite-size-corrected DMC result of —107.76 e V per atom,
and because of the various uncertainties the difference be-
tween these values is not significant.

A DMC calculation for the Ge atom gave an energy
of —103.42(3) eV, which is considerably lower than the
(spherically symmetric and spin-polarized) LDA result of
—102.80 eV. The DMC cohesive energy of 4.34 eV per
atom is subject to corrections of —0.29 eV (difference be-
tween the LDA cohesive energy using a norm-conserving
pseudopotential [16] and the local pseudopotential used
here) and —0.04 eV (zero-point motion). The final cohe-
sive energy of 4.01 eV is in reasonable agreement with
the experimental value of 3.85 eV [17], and is much bet-
ter than the LDA result of 4.59 eV [16].

In conclusion, we have described a method for per-
forming VMC and DMC calculations for periodic solids
using wave functions with nonzero wave vectors. For in-

sulating systems and small supercells our method gives
results much closer to infinite-sized-supercell results than
zero-wave-vector calculations. This conclusion is in ac-
cordance with the ideas of "special k points" methods
which have been developed in band structure theory. A
particularly advantageous choice is k = G/2, where G is
a supercell-reciprocal-lattice vector, which, for a closed
shell configuration, allows the use of a real wave function.
We have tested our method by performing calculations on
Ge in the diamond structure. Our method will also be
useful in studies of lattice models such as the Hubbard
Hamiltonian. The freedom to use nonzero wave vectors
in VMC and DMC calculations for solids can be used to
achieve much more accurate results than obtained in pre-
vious work.
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