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A crystal surface can be destabilized by an external field which induces the directed migration of
adatoms. We specify the conditions of instability in terms of the orientation dependence of the adatom
mobility and determine the resulting faceted state as the stationary solution of a nonlinear evolution
equation for the surface profile. Coarsening of the facet structure is studied using an atomistic solid-
on-solid model, and the analogy to spinodal decomposition is emphasized.
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Introduction.—Crystal surfaces can undergo faceting
transitions through a variety of mechanisms. As was first
shown by Herring [1], a surface is thermodynamically
unstable to the formation of a hill-and-valley structure if
its orientation does not appear in the equilibrium crystal
shape. The kinetics of this thermal faceting transition has
been the subject of several recent experimental [2] and
theoretical [3] studies. Other mechanisms for faceting
include chemical absorption [4] and the deposition of
material from an atomic beam [5]. In the latter case, the
surface is destabilized by nonequilibrium surface diffusion
currents induced by the external particle flux [6].

In this Letter we consider the nonequilibrium effects
on the stability and morphology of a crystal surface
which arise through the directed migration of adatoms
under the influence of an external field. Our work is
motivated by recent experiments, which have revealed the
striking influence of a dc heating current in the bulk of
a sample upon morphological transformations (such as
reconstruction [7], faceting, and step bunching [8,9]) at
the surface. These observations have been interpreted in
terms of the surface electromigration of adatoms along the
current direction [7,8], a phenomenon which is directly
accessible to electron microscopy studies [10].

Previous theoretical studies of current-induced surface
instabilities [11] have focused on the interaction of the
(continuous) adatom density with surface steps and the re-
sulting step dynamics. Here, we employ two complemen-
tary approaches. First, we formulate a continuum theory
to describe the surface on scales large compared to the in-
terstep distance. Within the continuum theory the precise
conditions for surface stability are particularly transpar-
ent and can be derived from simple linear analysis. Not
surprisingly, the stability of a given surface orientation
is governed by the orientation dependence of the adatom
mobility . To follow the morphological instability be-
yond the linear regime and predict the orientations that
appear in the final, faceted state, the full nonlinear evo-
lution equation for the surface has to be invoked. This
will be detailed below. It turns out that the selection of
well-defined stable facet orientations is possible only if
certain conditions on the orientation dependence of the
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adatom mobility are met. Once the facet orientations are
established locally, further evolution proceeds through a
coarsening process which can be analyzed in the spirit of
the continuum theory of spinodal decomposition [12,13].

In the second part of this paper we introduce an atom-
istic solid-on-solid model in which the electromigration
forces appear as a bias in the jump rates of adatoms.
This model goes beyond conventional step dynamical ap-
proaches [11] in that it includes the fluctuations which
arise from the particulate nature of the adatom fluxes.
One important fluctuation effect is the destabilization of
surface orientations which, according to linear stability
analysis, would be regarded as stable. By analogy with
spinodal decomposition [13], fluctuations are also ex-
pected to affect the coarsening of the facet structure. We
provide a link between continuum and atomistic modeling
by showing how the facet structure selected by the solid-
on-solid dynamics can be predicted from the continuum
equation.

Since the external field singles out one direction in the
plane, our discussion will be restricted to surface profiles
which vary only in one dimension. Inclusion of the trans-
verse dimension in the atomistic simulations leads to addi-
tional effects which are briefly mentioned at the end of the
paper. In the interest of simplicity we further neglect the
desorption of adatoms. While sublimation may play a role
in some of the experimental systems [7-9], it is clearly
not necessary for the appearance of current-induced insta-
bilities [11]; moreover, it is straightforward in principle to
include it in our analysis.

Continuum theory.—The one-dimensional surface pro-
file is described by a height function h(x, ), the external
field being oriented along the x axis. Volume conserva-
tion implies that h satisfies a continuity equation

hl +Jx =09 (1)

the subscripts denoting partial derivatives. In equilibrium
the current J is proportional to the derivative of the
surface chemical potential with respect to the arclength
along the surface [14]. The external field E contributes a
linear term Ex to the local chemical potential. The total
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current is therefore
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where g = 1 + (h,)?, and the surface tension o has
for simplicity been assumed to be isotropic. Expanding
(1) and (2) around a uniformly tilted surface h = mx
with m = tan#, we find the linear growth rate for a
perturbation with wave number g,
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with ' = du/dm. The stability is determined by the

sign of the ¢* term. Under isotropic conditions u’ = 0,

and we see that surfaces with a negative tilt (m < 0) are

unstable. A surface oriented parallel to the field (m =

0) would appear to be stable; however, we expect that

thermal fluctuations will tilt portions of the surface into

the unstable regime, thereby inducing a faceting transition
also in this case.

In general, the stability of a surface parallel to the field
is seen to depend on the sign of Eu’(0). Clearly u'(0)
is expected to be nonzero for vicinal surfaces; an explicit
expression for a simple step train model was derived by
Stoyanov [11]. For singular orientations x/(0) = 0 by
symmetry, and the m = 0 surface is stabilized by the
surface tension term in (3). As argued above, fluctuations
will nevertheless generate slightly misoriented regions
which then become unstable. The instability affects
negatively tilted (m < 0) regions if E[x(0) — «"(0)] > 0
and positively tilted ones otherwise.

It is worth pointing out that the external field has an
important effect on the fluctuations of the surface even
when it does not cause any instability. We recognize
from (3) that a stabilizing field changes the small ¢
behavior of the dispersion relation from the w ~ ¢* law
characteristic of thermal equilibrium [14] to w ~ ¢2.
Adding a thermal noise term (Jr), to the right-hand
side of (1) and analyzing the resulting linear Langevin
equation one finds that the field completely suppresses
the thermal roughness of the surface [15]. Since the
orientations that appear in the faceted state are in the
stable regime of (3), the facets are, therefore, smooth.

We now ask what stable surface profiles can evolve
beyond the linear instability. To answer this question
it is convenient to introduce the field ¢ = he/J8 =
sinf, —1 = ¢ = 1. The stationarity condition J = J* =
const then becomes equivalent to Newton’s equation for
the “particle coordinate” ¢ moving in “time” x, the
“potential” V(¢) being determined by the orientation
dependence of the mobility, through

J
= — = —y/ . 4
Chu = s —E= V().

To describe the faceted state we look for periodic trajecto-
ries of large period L, subject to the additional constraint

1948

)

L n—1/2
h(L)—h(O)zfo (- ¢ =0, (5

which implies that on average the surface is parallel to
the field. Solutions of (4) with period L — « exist only
if the particle spends most of its time at a position ¢*
where V/(¢*) = 0; one readily verifies that in order to
correspond to a stable facet orientation, ¢* has to be a
local maximum, V"(¢*) < 0.

There are, in general, two conceivable types of solu-
tions. In the first case, the particle starts at a local maxi-
mum ¢*, rolls downhill toward one of the boundaries
¢ = 1lor o = —1, where it is reflected in a (short) time of
order (o/E)'/?, and returns to ¢*. This bounce solution
corresponds to a single facet orientation #* = arcsin¢*
coexisting with a macrostep, i.e., a localized region where
the surface profile is almost vertical (on a real surface
these regions would manifest themselves as disordered
step bunches [9]). In the second case the particle moves
between two degenerate maxima ¢ ,, a kink solution cor-
responding to the coexistence of two well-defined facet
orientations. The stationary current J* is fixed by the re-
quirement that V(¢*) = V(1) or V(—1) for the bounce
and V(¢1) = V(¢;) for the kink, and it always satisfies
It = Ep(¢" 1 — (¢*)%

For concreteness, let us consider a singular surface of
a crystal with fourfold symmetry, such that u(0) = ug +
m1cos46. In the isotropic limit, u; = 0, the potential has
at most one maximum (for J* such that 0 = J*/E < u,),
so only bounce solutions are possible; an explicit cal-
culation shows, however, that due to the divergence of
V/(¢) at ¢ = =1, the constraint (5) cannot be satisfied
for L — . Thus, for small anisotropy no stable inhomo-
geneous stationary solutions exist. This is confirmed by
the numerical integration of the full time-dependent prob-
lem (1,2), which shows the development of macrosteps of
ever increasing height [16]. A finite amount of anisotropy
has to be introduced in order to produce several local
maxima in V(¢). For u, <‘O, two maxima appear when
mf o < — %; this condition turns out to be sufficient for
the existence of a kink solution. The time-dependent nu-
merical simulation confirms that this solution is indeed
dynamically selected. In contrast, for x; > 0, kink solu-
tions are viable only for w;/uo close to unity [16].

Atomistic modeling. —The microscopic approach is
based on a standard solid-on-solid (SOS) model for surface
diffusion. The (one-dimensional) surface is represented
by integer height variables k(i) with i = 1,..., L and peri-
odic boundary conditions. The energy of a configuration
is given by the Hamiltonian

L
H =3 lhG + 1) = h(). (6)
i=1

In an elementary surface diffusion step, an atom moves
from a randomly chosen site i to one of the neighboring
sitesi * 1,e.g., h(i) = h(i) — land h(i + 1) — k(i + 1) +
1. This occurs at rate I' = min(1, e 2H/T), where AH is
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the energy difference between the final and the initial state
of the surface, and T denotes temperature. In equilibrium,
the direction of an attempted move is chosen with equal
probability to the left (i — i — 1) or to the right (i —
i + 1). In the presence of an external field the moves are
biased: Moves to the right are attempted with probability
p, to the left with probability 1 — p, where p > %

Figure 1 shows the result of a simulation of the biased
dynamics. One observes the formation and coarsening of
an array of bounces—facets of a well-defined orientation
separated by macrosteps (or step bunches). To understand
this result, we need to somewhat modify the continuum
theory formulated above. The central observation is that,
in the SOS geometry, the surface diffusion current is driven
by horizontal chemical potential differences rather than
differences measured along the arclength of the surface
(vertical potential differences have no meaning in these
models). Therefore the factor ,/g~! in front of the square
bracket in (2) should be omitted when describing an SOS
model. This has two important consequences. First,
the prefactor of the ¢? term in the dispersion relation
(3) becomes simply Eu'(m), showing that the external
field has a (stabilizing or destabilizing) influence on the
dynamics only if the mobility is explicitly orientation
dependent. Second, the potential that appears in the
particle equation (4) is now defined through V/(¢) = E —
J*/ u(), which remains finite at ¢ = *1; this guarantees
the existence of bounce solutions in cases where V(¢) has
only a single maximum.

To actually predict the facet orientation that is se-
lected in Fig. 1, we would have to know the orientation-
dependent adatom mobility. In general, this quantity is
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FIG. 1. Current-induced faceting in the biased one-
dimensional SOS model at temperature 7 = 0.5 and bias
p = 0.7. The times (in attempted moves per site) are indicated
above the profiles. Subsequent profiles have been displaced by
100 lattice units in the vertical direction.

given by a Green-Kubo formula, which involves an in-
tegral over certain dynamical correlation functions, and
is therefore difficult to explicitly evaluate [17,18]. The
Green-Kubo formula shows, however, that the mobility
is always bounded from above by the ensemble-averaged
jump rate (I'). It is straightforward to calculate (I") for the
present, one-dimensional model, as a function of orienta-
tion and temperature. One obtains a symmetric function
with a single minimum at zero orientation and the limiting
value (I') = 1 at large positive or negative slopes. Numer-
ical measurement [18] of the adatom mobility shows that
its qualitative behavior is well represented by (I'). For ac-
tual calculations we use the form wu(¢) = 1/(a — b¢?),
with a > b; this has the advantage of producing a purely
cubic potential V(¢), for which the bounce trajectory (in
the limit L — o) can be explicitly computed. One finds
that the selected orientation is 6* = arcsin(—%) = —-30°
independent of a and b, which is rather close to the nu-
merical value 8* = —35°.

We have argued above that a singular surface, while
being marginal in the sense of linear stability analysis,
will become unstable due to thermal fluctuations. This
is clearly confirmed by the simulation shown in Fig. 1,
which starts from a flat (singular) surface. It is natural
to ask how far into the linearly stable regime this
fluctuation-induced destabilization mechanism will be
effective. Simulations of tilted surfaces [16] indicate a
simple answer: At long enough times any surface with
average orientation 6 > 6" breaks up into an array of
facets (of orientation 6#*) and macrosteps. In analogy
with phase separation in equilibrium systems [2,3] we
may therefore conclude that # = 0 plays the role of
the spinodal for the faceting transition, while the phase
boundary is located at 6*.

Coarsening.—By inspection of Fig. 1, one estimates
that the typical facet size ! doubles when time increases
by a factor of 10, corresponding to a coarsening law
I ~ " with n = In2/In10 = 0.3. A more quantitative
analysis, involving measurements of both the average
distance between macrosteps and the position of the
first zero of the real space height-height correlation
function, indicates that n = ;l;. It is tempting [3] to
relate this behavior to spinodal decomposition (SD) in one
dimension [12,13], given that the dynamical equation for
the “order parameter” ¢(x,t) (written here in the form
appropriate for the SOS geometry)

b= -1 - ¢ [uw(@)(0dy + B, (T

is similar, but not identical, to a conserved Ginzburg-
Landau model [13] (note, in particular, that ¢ is not con-
served, but ¢/y/1 — ¢? is). Langer’s [12] approach to
SD is based on a linear stability analysis of the station-
ary inhomogeneous order parameter profile of given pe-
riodicity L; the lifetime of the profile provides the time
scale for further coarsening when the typical domain size
is of order L. In our context, this implies investigating the
eigenmodes of (7) linearized around the stationary bounce
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solution ¢,(x). The eigenvalue problem becomes

2
[ = 6" 2 ()

2
x[—aa—a—z + W(x)]t// =y, ®
X

where, for our choice w(¢) = 1/(a — bp?), W(x) =
—2bJ*¢,(x). By translational invariance, ¢, = d¢,/dx
is an eigenfunction with eigenvalue A = 0. However, in
contrast to standard SD, ¢, has a node and is, therefore,
not the ground state of the Schrodinger operator in the
square brackets in (8), which peaks at the minima of
W(x). Consequently, the coarsening of a periodic array of
bounces does not proceed through a translation of domain
walls but rather by the evaporation of single peaks (i.e.,
macrosteps), the surviving part of the structure remaining
essentially fixed in space. This is clearly seen in a
numerical solution of (7) (Fig. 2). To determine the actual
coarsening law one has to analyze the full linear operator
(8), which has not yet been accomplished. In standard
one-dimensional SD, the coarsening is logarithmic at zero
temperature [12], while thermal fluctuations give rise to
a power law € ~ ¢'/3 [13]; at present, we are unable to
decide whether a similar scenario applies here.
Conclusion.—In this paper, we have explored several
aspects of the morphological instability of crystal surfaces
induced by electromigration currents. Much remains
to be done. Most importantly, the modeling should be
extended to two-dimensional geometries. On the basis of
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FIG. 2. Coarsening in the continuum model (7) with parame-
ters E =05, o = 1, and u(¢) = 1/(2 — ¢?). The equation
was discretized and integrated forward in time with a time
step of 0.05. The initial condition was random with aver-
age (¢) = 0.3, inside the unstable regime. The figure shows
the order parameter profile at times ¢ = 5000 (dashed) and
t = 500000 (full). The peaks correspond to macrosteps, the
flat regions ¢ = ¢* = —0.5 are the facets.

1950

symmetry arguments, one expects that the field will induce
an inclination-dependent current also in the transverse
direction, in analogy to the effect of the particle flux in de-
position processes [6]. Preliminary simulations [16] of a
two-dimensional atomistic model indicate that this leads, in
addition to the step bunches obtained in the one-
dimensional case (Fig. 1), to a macroscopic tilting of the
surface in a direction perpendicular to the external field;
this type of behavior has in fact been observed on the
Si(111) surface [9]. A second open question concerns the
behavior of real surfaces in situations where the contin-
uum equations do not permit any stable, faceted solution.
Finally, our somewhat naive approach of describing the
heating current through a constant, homogenous external
field may have to be modified, once the microscopic
mechanism that allows the adatoms to become entrained
with the current is better understood.

We wish to thank M. Rost and H. Spohn for explaining
to us the microscopic definition of the adatom mobility.
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