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Obstructions to Shadowing When a Lyapunov Exponent Fluctuates about Zero
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We study the existence or nonexistence of true trajectories of chaotic dynamical systems that lie
close to computer-generated trajectories. The nonexistence of such shadowing trajectories is caused

by finite-time Lyapunov exponents of the system fluctuating about zero. A dynamical mechanism
of the unshadowability is explained through a theoretical model and identified in simulations of a
typical physical system. The problem of fluctuating Lyapunov exponents is expected to be common in
simulations of higher-dimensional systems.

PACS numbers: 05.45.+b, 05,40.+j, 06.50.Dc

Physical theory is based on differential equation mod-
els. Computer simulation using the equations is often
used to obtain information, such as long-term statistics, on
the system being modeled. In climate modeling, for ex-
ample, statistics of temperature and rainfall might be rele-
vant. A basic requirement needed to interpret the result of
a simulation is that the behavior of a solution determined

by the computation, which is afflicted with small errors
due to truncation and roundoff, is the same as the behav-
ior of some true solution of the system under study. If
there is a difference in behavior between computed solu-
tions and actual solutions, the investigator cannot proceed.
A climate model that continues to repeat winter conditions
all year long because of accumulated numerical errors will
not be useful for computing the mean yearly temperature.

This problem is especially acute when the system
is chaotic. In that case, trajectories exhibit sensitive
dependence on initial conditions: two trajectories with
initial conditions that are extremely close tend to diverge
exponentially from one another. Because of this effect, a
small truncation or rounding error made at any step during
the computation will tend to be greatly magnified by
future evolution of the system. In view of this, it is natural
to ask under what conditions the computed trajectory will
be close to a true trajectory of the model.

Previous work on this topic [1—5] has resulted in com-
putational techniques for "verifying" computer-generated
trajectories for low-dimensional chaotic systems —that is,
to produce a computer-assisted proof of the existence of
a true trajectory of the system, called a shadowing trajec-
tory, that closely tracks the computer-generated pseudo-
trajectory. (Even in this case, the statistical properties of
the system may not be decided. )

Despite these positive results, not every pseudotrajec-
tory can be shadowed. We believe that in systems with
high-dimensional chaos, trajectories with intrinsic noise,
such as computer-generated pseudotrajectories, can be
shadowed only for short times. Consideration of simple
examples of nonlinear maps [3] illustrates that there are
critical points of trajectories where roundoff error or other
noise, perhaps introduced at a distant part of the trajec-
tory, can introduce new behavior. At such "glitches" all
true trajectories diverge from the pseudotrajectory. In
this case, when there is no true trajectory that stays near
the pseudotrajectory, we say that the pseudotrajectory is
unshadowable. There is no way known to ensure that
a given computer simulation is representative of a true
trajectory of the system (or even visits the entire phase
space attractor) except when a proof of its shadowabil-
ity is available. If the intrinsic noise is being injected by
the environment itself rather than by a truncation error of
a computer simulation, unshadowability raises interesting
questions about the validity of deterministic modeling for
the system.

In this Letter we describe a cause of unshadowable
pseudotrajectories that is likely to occur widely in higher-
dimensional chaotic dynamical systems. We will say that
a Lyapunov exponent of a trajectory "fluctuates about
zero" if for any positive number T the time-T Lyapunov
exponent spends arbitrarily long stretches of the trajectory
being positive and arbitrarily long stretches being nega-
tive. The finite-time Lyapunov exponents quantify the
expansion and contraction of phase space along the tra-
jectory over a time span of T. We will show that the
existence of even one Lyapunov exponent which fluctu-
ates about zero causes computer-generated trajectories to
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be unshadowable. Since a positive Lyapunov exponent is
the signature of chaotic dynamics, this is a fact of critical
importance to researchers studying the existence of chaos
in computer models.

The manner in which a Lyapunov exponent fluctuating
about zero leads to unshadowable pseudotrajectories is
illustrated well by a theoretical model studied by Abraham
and Smale [6] in 1970. In this example, there is an
invariant set containing two fixed points: one with a
single local expanding direction and one with a two-
dimensional local expanding set. Typical trajectories
wandering through the invariant set spend arbitrarily long
times near each of the fixed points. The second largest
Lyapunov exponent of such a trajectory is positive in

trajectory segments near one and is negative in trajectory
segments near the other, so this exponent fluctuates about
zero. A ball of initial conditions beginning near the first
fixed point will be squeezed into a line segment (with
small thickness) under evolution of the dynamics. A
computer-generated trajectory beginning in the ball, with

truncation error 6, will be displaced a distance of 6 from
the line segment. When the region around the numerical

trajectory develops a second expanding direction by
visiting a neighborhood of the second fixed point, the
numerical trajectory will be pushed away exponentially
fast from the line segment of true trajectories, resulting in

an unshadowable trajectory.
Although this example is nonphysical, we have found

similar behavior in models of typical mechanical systems
such as the double rotor [7]. For certain parameter
settings, the double rotor has a chaotic attractor whose
second largest Lyapunov exponent fluctuates about zero.
As we discuss below, this effect causes almost every
moderately long numerical trajectory to be unshadowable.

In order to quantify the phenomenon of unshadowabil-

ity, we introduce the ideas of continuous shadowability
and brittleness. A continuously shado~able pseudotrajec-
tory is a computer-generated trajectory that can be con-
tinuously deformed into a true trajectory in such a way
that the errors at each trajectory point are decreased mono-

tonically to zero. Although this appears to be a stronger
requirement than for a shadowable pseudotrajectory, it
turns out that the hypotheses of the original Anosov-
Bowen shadowing theorems [8—10], as well as computer-
assisted shadowing methods mentioned above, imply not

only that pseudotrajectories are shadowable but that they
are continuously shadowable. We argue that continuous
deformability to a true trajectory is a minimum require-
ment for accepting a computed simulation as meaningful
information.

A fundamental phenomenon connecting continuously
shadowable pseudotrajectories to their shadowing (true)
trajectories is the existence of a constant of proportional-

ity between the error magnitude of the pseudotrajectory
and the distance the pseudotrajectory must move in phase
space to be deformed into a true trajectory. We ca11 this

constant of proportionality the brittleness of the pseudo-
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trajectory. An obvious necessary condition for continuous
shadowability is that the brittleness times the error mag-
nitude of the pseudotrajectory is smaller than the extent
of the attractor in phase space. This leads to a prac-
tical algorithm for investigating the shadowability of a
computer-generated trajectory. Using Jacobian informa-
tion available from the simulation, it is possible to cal-
culate a first-order approximation for the brittleness (the
test brittleness) using small deformations of the pseudo-
trajectory. Knowledge of the test brittleness is a useful
diagnostic for continuous shadowability of the pseudotra-
jectory or lack thereof.

Let f denote the map which represents one time step of
the dynamics. For example, it may represent the time-T
map produced by an ordinary differential equation (ODE)
solver with one-step truncation error bounded by B. (By
one-step error, or noise, we mean the discrepancy between
a time-T step of the ODE solver and a true time step
of the differential equation, starting from the previous
point. ) If the present time is to and the present state
of the dynamical system is pp, then the correct state
at time to + T is f(po). The ODE solver will produce

p i, where
~ p &

—f(po) ~
& 8. Then po and pl are two

points of a 8 pseudotrajectory of the dynamical system

f. Further integration of the simulation of f results in

a 8 pseudotrajectory (po, . . . , pz) of length N + 1, where

~ p;„—f(p;) I & 8 for i = 0, . . . , N —1.
It would be desirable to know the existence of a

true trajectory xo, . . . , xz [that is, f(x;) = x;+& for i =
1, . . . , N —1] that e shadows the pseudotrajectory. The
true trajectory jx;};=0 is said to be an e shadowi-ng

trajectory for the pseudotrajectory jp;), =0 if ~x; —p; ~
& e

for i = 0, . . . , N. Because of the exponential divergence
of trajectories, if a shadowing trajectory exists, then the
initial condition xp will differ from pp. In fact, the first

point xp of the true shadowing trajectory is expected
to be found along the unstable direction emanating
from pp.

The shadowing lemma of Anosov [8] and Bowen [9] is
a theoretical result for dynamical systems with hyperbolic
structure. An attractor is called hyperbolic if the tangent
spaces at each point of the attractor can be decomposed
into uniformly expanding and contracting subspaces, such
that the angle between these subspaces is bounded away
from zero. The shadowing lemma states that for each
nonzero distance e, there exists an error magnitude 6
such that each 6 pseudotrajectory can be a shadowed.
Furthermore, under the hyperbolicity assumption, each
such pseudotrajectory can be continuously shadowed
within e. (See, for example, the proof of the shadowing
lemma in [10].)

We say that a pseudotrajectory has a glitch at point
n if [p,],"=0 can be continuously shadowed, but {p;j,".=+0

cannot. One type of glitch is caused by a Lyapunov
exponent fluctuating about zero, as described above. A
schematic representation of a second type of glitch is
shown in Fig. 1. Assume that q is a fixed point. Assume
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one-step error

&n

is a first-order approximation to this constant that is
explicitly computable. The test brittleness is determined
from the Jacobians (first derivative matrices) at the points

p;. Assuming the error at step i of the computation is
6;, we want to approximate the correction c; such that

f(p; + c;) = p;+~ + c;+~ for i = 0, . . . , N —1; write c;
as the sum c; = s; + u; of components in the stable
(contracting) and unstable (expanding) directions at p;;
set so = uN = 0; and recursively solve

FIG. 1. A near tangency from a nonhyperbolic system. A
small error in the computation of f(p„ 1) can push p„across a
stable manifold, resulting in a glitch.

that the pseudotrajectory has no error until iterate n, when
error pushes p„across the stable manifold of q. True
trajectories must follow the unstable manifold of p„&,
which separates exponentially from the stable manifold
of q, so that no continuous shadowing trajectory can
exist.

When a pseudotrajectory is continuously moved to a
true trajectory by deforming its noise to zero, we will con-
sider the distance moved by the pseudotrajectory to be the
maximum distance any single trajectory point was moved.
We call this the shadowing distance. The brittleness is
the constant of proportionality between the shadowing
distance of the pseudotrajectory and the original magni-
tude of the one-step error. The proportionality holds over
a large range of noise levels, as long as the pseudotra-
jectory itself is not significantly changed. The brittleness
is independent of the error magnitude (for small one-step
errors) but depends on the error directions —a different
set of one-step errors of the same magnitudes would, in
general, lead to a different proportionality constant. The
brittleness should be defined to be the maximum of this
magnification factor found over all possible error direc-
tions.

The brittleness of a pseudotrajectory is a measure of its
inability to be shadowed. If a pseudotrajectory is created
with noise level 10 ' for a chaotic attractor of unit size,
and if its brittleness is greater than 10', then one can-
not expect a true trajectory closely shadowing the pseudo-
trajectory. For hyperbolic systems, pseudotrajectories of
infinite length have finite (although possibly very large)
brittleness [10]. For nonhyperbolic systems, one typically
finds the brittleness to be an increasing function of the or-
bit length. As the length of a trajectory of a nonhyperbolic
chaotic process increases, the brittleness grows as the tra-
jectory gets increasingly close to nonhyperbolic regions
of the dynamics. The expected length between glitches is
therefore related to the amount to hyperbolicity possessed
by the system.

Although the brittleness cannot be computed exactly
without knowing the true trajectory, the test brittleness

and

u; = U(Df(p;+)) 'u;p) —&;), (2)

for s; and u;, i = 0, . . . , N —1, where S and U denote
projection onto the stable and unstable directions, respec-
tively. Then the ratio of the maximum magnitude of cor-
rection c; to the magnitude of one-step error 6; is the test
brittleness. Since the.computation is linear in b;, it is pos-
sible to choose the vectors 8; to have magnitude 1. The
6; are typically chosen to have randomly varying direc-
tions.

The double rotor map [7] is a four-dimensional map
which descirbes the time evolution of a mechanical
system consisting of two connected massless rods. The
first rod rotates around a fixed pivot; the second rod pivots
around the opposite end of the first rod. There is a mass
at the free end of the first rod and equal masses at the ends
of the second rod. A delta-function vertical impulse f(t),
of magnitude p, is applied to one of the ends at a constant
time interval, at which the system's four phase variables
(the two angular positions and momenta) are recorded.
Interesting dynamical behavior is exhibited by this system
for various settings of the parameter p

Application of the test brittleness algorithm to computer
simulations of the double rotor are shown in Fig. 2.
The difference between the shadowable case (parameter

p = 9) and the unshadowable case (p = 8) is clear from
this figure. In the vertical axis of Fig. 2(a), we graph
the test brittleness of a length 10000 pseudotrajectory for
p = 9, created with one-step error magnitude 10 ' . The
vertical extent of the graph is about 10, which is the
test brittleness for this trajectory. We should then expect
the shadowing distance to be about 10 . Figure 2(b)
shows the same information for a typical pseudotrajectory
of the double rotor with p = 8. The test brittleness in
this case is seen to be greater than 10 . This leads us
to the prediction that at a minimum, 40 decimal digits
of accuracy will be needed per iteration step in order to
shadow a typical length 10000 trajectory of the double
rotor with p = 8. The brittleness of a pseudotrajectory
increases with its length. For an orbit of length 10, our
estimate of the test brittleness is 10'~.

The explanation of the difference in shadowability
for the cases p = 8 and p = 9 lies in the different
degrees of hyperbolicity of the two systems. A numerical
study of the behavior of finite-time Lyapunov exponents
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FIG. 2. First-order approximation of the shadowing distance
per unit one-step error or brittleness as a function of trajectory
point. The test brittleness is the vertical range of the graph.
Results are shown for a 10 000 point trajectory of the double
rotor with parameters (a) p = 9 and (b) p = 8.
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for the two parameter values of the double rotor is
shown in Fig. 3. For p = 8, the finite-time Lyapunov
exponents show fluctuation between one and two positive
exponents. The second largest exponent fluctuates about
zero. For p = 9, there are consistently two positive
exponents.

A close examination of the dynamics of the double
rotor reveals an explanation for the fluctuating number
of positive finite-time Lyapunov exponents in the p = 8
case. There are many periodic orbits embedded in the
attractor whose local behavior varies in a qualitative way.
Some of the periodic points have one expanding direction
and three contracting directions, while others have two
expanding and two contracting [7]. As a trajectory (or
pseudotrajectory) moves densely through the attractor, its
number of positive finite-time Lyapunov exponents varies
as it moves among the varying type of periodic orbits.
Although the double rotor with p = 8 is the first physical
example for which this behavior has been demonstrated,
we expect it to be commonly found in higher-dimensional
systems.

This research was supported in part by grants from the
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FIG. 3. Estimates of the four time-T Lyapunov exponents
of the double rotor, for T = 100, 200, and 300. A dozen
simulations were done for each T. (a) In the p = 9 case,
there is consistently only one positive finite-time Lyapunov
exponent. (b) For p = 8, trajectory segments alternate between
one-dimensional and two-dimensional expanding subspaces.
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