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Large Scale Structure and Supersymmetric Inflation without Fine Tuning
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We explore constraints on the spectral index n of density fluctuations and the neutrino energy density
fraction 0, from observations of large scale structure. The best fits imply n = 1 and El, , = 0. 1 —0.3.
for Hubble constants 40—60 kms 'Mpc '. We present a new class of inflationary models based on

realistic supersymmetric grand unified theories (GUTs) which do not have the usual "fine tuning"
problems. The amplitude of primordial density fluctuations is found to be ~ (Mx/M»)-', where M&

(Mp) denote the GUT (Planck) scale. The spectral index n = 0.98, in excellent agreement with the

observations.

PACS numbers: 98.80.Cq, 12.10.Dm. 12.60.Jv, 98.65.Dx

Recent studies of large scale structure formation [1,2],
when confronted with a variety of data from the Cosmic
Background Explorer (COBE) [3,4] and other large scale
galaxy surveys, provide support for an inflationary scenario

[5] in which the spectral index of density fiuctuations n

is close to unity and the dark matter is a mixture of cold
and hot components. Nonsupersymmetric grand unified

theories (GUTs) which give rise to precisely this scenario
were constructed more than a decade ago [6]. However,
several fundamental challenges, including unification of
GUTs with gravity and the gauge hierarchy problem,
strongly hint that the supersymmetric grand unified (SUSY
GUTs) framework may be a more promising way to
proceed.

Supersymmetric GUTs have the desirable feature that

they permit unification of the standard model gauge
couplings to occur at scales on the order of 10' GeV,
which is indicated by the recent data from the CERN
e+ e collider LEP. Encouraged by these developments,
we investigate here if the inflationary scenario can be
realized within the framework of SUSY GUTs. We
would call the attempt "successful" if the following
conditions are met. First, the scalar (Higgs) sector of
the theory, including the inflaton part, is determined

by particle physics considerations. Second, no "fine
tuning" of parameters is needed. Finally, it should be

plausible that Planck scale corrections are not large.
The inflationary scenario we are led to has previously
been considered in more general terms by others [7—9],
and been dubbed "hybrid' inflation. Our realization of
"hybrid inflation" within a supersymmetric framework is

unique in a number of ways and can be implemented in a
variety of models. One particularly important result has to
do with the amplitude of primordial density fluctuations,
which turns out to be proportional to (M&/Mp), where

M» denotes a superheavy (GUT scale) and Mp = 1.2 X
10' GeV is the Planck mass. The spectral index of the

density fluctuations is very close to unity as required by
these observations.

We begin with an examination of the requirements for
the density fluctuations which are produced by inflation.
It is well known that inflationary models produce initial

density power spectra of the form P(k) ~ k". The devia-
tion of n from unity (the Harrison-Zeldovich spectrum)
depends on the specific implementation of inflation. We
would like to know, for example, which values of n are

preferred by the data.
The simplest models of inflation define a set of cosmo-

logical models with the following parameters. The density

p of the Universe is the critical density 0 = p/p, =
87r Gp/(3HO) = 1, where G is Newton's gravitational con-
stant and Ho = 100h kms 'Mpc ' is the present value of
the Hubble constant. We take h = 0.5 ~ 0.1, which cor-
responds to the range of h allowed by the combination of
observations and constraints on the age of the Universe in

critical density models with a vanishing cosmological con-
stant. Big bang nucleosynthesis [10]then limits the baryon
fraction to the narrow range Ab„. „y„„h'- = 0.0125 + 0.0025,
where Qb, ,„„„=pb„„,„/p, We take the central value of
this range in our models. The remaining mass density

(1 —Ob, „y„„) is in the dark matter which could be com-

posed of some mixture of cold (CDM) and hot (HDM)
components. The latter is assumed to be "lightly" mas-

sive (few eV) relic neutrinos. The relative concentrations
of the two components is unknown and must be allowed
to vary when we attempt to fit models to the data.

The above set of parameters define a family of infla-

tionary models, which we test against data. The details
of our testing procedure have been described in detail in

Ref. [1], so we will just give a brief indication of how the

analysis goes. We will assume here that the amplitude of
tensor fluctuations generated is negligible, since the analy-

sis in [1] showed that the data do not favor a significant
amplitude of inflationary tensor fluctuations.
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We calculate the value of the g2 statistic for each model

compared to data after first finding a least squares fit of
the normalization and galaxy bias factor. (The bias fac-
tor determines the ratio of galactic number density to
mass fluctuations. ) The data we use for this compari-
son are the COBE temperature fluctuations [3], the power
spectrum from the QDOT IRAS survey of galaxies [11],
and the bulk streaming velocities [12]. (Note that the

COBE results from Ref. [3] are used because the 1tr lim-

its bracket the two slightly different results of the 2 yr
COBE data analyses [4].) These three constraints all

concern data which are well described by linear pertur-

bation theory. We also enforce two constraints on the

power spectrum at small wavelengths which necessarily
involve data which cannot be described by linear per-
turbation theory. We take care that these constraints are

applied allowing for uncertainties in the interpretation of
the nonlinear constraints on the amplitude of the linear

power spectrum. These two constraints are that we do
not overproduce clusters [13] BM/M(8h ' Mpc) & 0.8,
and that the early quasar population can be produced [14]
BM/M(0. 6h ' Mpc) ) 0.9. (See also [15].)

We then observe the change in the g2 statistic as we

vary n and the fractional neutrino density of the Universe
0„. We can draw the confidence level contours [16] in

the A, -n plane, and the results are presented in Fig. 1.
We have repeated the calculation for three values of the

Hubble constant which span the allowed range in these
models. Figure 1 shows how the data favor values of
n very close to unity with the actual limits depending
somewhat on the mix of dark matter and the Hubble
constant. Overall we can say that with 99% confidence,
0.80 ( n[Ho/(50 km s ' Mpc ')]'~2 ( 1.15, independent

of the dark matter composition. The value of n = 1.00
works well over the range of Hubble constants 40—
60 km s ' Mpc '. It therefore appears that n is constrained
to be quite close to unity by the data. The limits found

here are similar to those found in other studies [2].
We now discuss how such density fluctuations can be

realized in realistic supersymmetric GUTs. We are partic-
ularly interested in identifying models in which there are
no fine tuning (including gauge hierarchy) problems. To
set things up, consider the following globally supersym-
metric renormalizable superpotential W:

W = i~S@P —
iu, S,

where P (P) denote a conjugate pair of superfields trans-

forming as nontrivial representations of some gauge
group, while S is a gauge singlet superfield. This su-

perpotential is "natural" in the strong sense [17]. It is
of the most general form consistent with R symmetry
under which S e'~S, W e'~ W, while the product

@@ is invariant. Note that cubic terms in P and @
can be forbidden by assuming, for example, the trans-

formations P e'~@, P e'~P. In realistic models
such terms may be allowed without altering the main
conclusions.

We point out that, at least in the global SUSY case,
the R symmetry is the unique choice for implementing
the "false" vacuum inflationary scenario in a natural

way. It is the only symmetry which can eliminate all of
the undesirable self-couplings of the (inflaton) S, while

allowing the linear term in the superpotential. With
supersymmetry unbroken, the potential takes the form (we
represent the scalar components with the same symbols as
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FIG. 1. The y2 contours (68%, 95%, and 99% confidence levels) for values of n and II„ implied by the large scale structure
data. In the left panel we have the constraints for a Hubble constant of h = Ho/(100kms ' Mpc ') = 0.4. Similarly we have the
constraints for Hubble constants 50 and 60 kms ' Mpc ' in the center and right panels. Values of n —1 are consistent with all
values of the Hubble constant. We note that decreasing the Hubble constant favors larger values of n and smaller 0,.
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the superfields if there is no danger of confusion):

+ Ia@P —p, I + D — terms. (2)
The D terms vanish along the (D-flat) direction 1@1 =

Consequently, the only supersymmetric minimum
of the potential is at

&5) =0,
(3)

Mx —= &I@I) = &lit)1) = p/v ~ (p & 0, ~ & o)

We will say more about the scale M& shortly.
Consider now an early Universe scenario with chaotic

initial conditions. For ISI & IS, I
= p/~ic, the effective

potential V is minimized by &P) = &@) = 0. That is, for
ISI & 5„ the energy density is dominated by the false
vacuum energy density p,4, which can therefore lead to
an exponentially expanding (inflationary) universe. The
potential in (2) does not contain a term which can drive S
to its minimum value. Similar potentials were studied in

Ref. [9]; however, in that work the quantum corrections
were not considered. Unless K (( 1, these corrections

play a crucial role which explains why our conclusions
are quite different.

With ISI & S„both )fI) and p vanish and there is a
nonzero Fs — term (= p, 2) which breaks supersymmetry,
such that the one loop corrections to the effective potential
are nonvanishing, and given by [18]

b V(S) = g M;(S) ln
(—1) 4 M (5)-
64m 2 (4)

where the summation is over all helicity states, (—1)"
indicates that the bosons and fermions make opposite sign
contributions, and A denotes a renormalization mass. The
quantum corrections will help drive S to its minimum.

Note that for S & S, there is no mass splitting inside
the gauge supermultiplets or the S superfield (actually the

masses of S scalar and its fermionic superpartner both
vanish). The nonvanishing contribution is from the mass

splitting within the @,P superfields. The complex scalars
in P, @ are split by the nonzero Fs term into two pairs

of real scalar and pseudoscalar components with mass

squared K S ~ Kp, whereas the fermionic partners have

mass KS. The one loop corrected effective potential

(along the inflationary trajectory S & S, , p = it) = 0) is

given by

V,«(5) = p, + 2p ln
327T2 J

+ (nS —p, ) in(1
KS

+ (nS + y. ')'fn(i + p, 2 ~

KS2)

(5)
If 5 is sufficiently greater than S„V,«(5) reduces to the

simpler form

K K 5 3
V,«(5» 5,. ) = p' 1+,(ln, + — . (6)32~2 .'I], -' 2-

For 151 & S, , the inflationary phase is dominated by
the false vacuum energy p, as in the tree level case, but
the additional contribution in (5) will now drive 5 to its
minimum. The GUT phase transition takes place only after
the 5 field drops to its critical value S, (= Mx). Below
5,. , the S field is driven to zero by the positive mass term
~ ISI I@'I which is increasingly more effective due to the
increase of the ~t, ~t vacuum expectation values (induced

by the decreasing 5). All of the fields rapidly adjust to
their vacuum values (3), thereby restoring supersymmetry.

Note that the end of inflation does not necessarily
coincide with the GUT phase transition which occurs
when S approaches S, . The end is signaled when the
"slow roll" condition is violated for some 5 & S, We
can characterize the slow roll condition as (see first paper
in Ref. [8])

e ««1, lrfl ««1.
where

T/
16vr V Sm V

(the prime refers to derivatives with respect to S). The
inflationary phase may end before the GUT transition if
the above conditions are violated at some S & S, For
convenience, we can use the parametrization S = xS„.,
where the parameter x characterizes the rolling of S. (The
GUT phase transition occurs for x = 1.) The quantities e
and g are given by

$6~2M

+(,-+»in(i+ —,

KMp 'I 1 1

7l = (3x —1) ln I—
4~My ) Sm

I+ (3x-+ 1)ln 1+ —, . (9)

Note that g becomes infinitely large for x =- 1. so that

inflation ends as x approaches 1 (from above).
So far, we have not introduced any supersymmetry

violation in the system [the global minimum in (3) is

supersymmetric]. In conventional schemes (say, N = 1

supergravity), this breaking is introduced through the

soft SUSY violating terms in the tree level potential.
The main inAuence of such terms on the inflationary

scenario discussed above arises from the fact that the

SUSY breaking induces a TeV scale (mass) term for the

scalars, in particular for the 5 field. The term m21SI

(m — 1 TeV) provides an extra force driving 5 to the

minimum. Ho~ever, unless the coupling constant K is

very small, the soft mass terms only provide a small
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n= 1— = 0.98
Ng

which, as we have seen earlier, is in the central range of
the values preferred by observations.

An estimate of the coupling ~ is obtained from the
rela iton

8~'/' M
(12)

xg QNg Mp

With xg —10 say (which corresponds to S —10'65 GeV,
where the Planck scale corrections are presumably small),
the coupling ~ turns out to be on the order of 10 . Note
that for this value of ~, the tensor generated anisotropies
are less than 10 of the scalar anisotropy amplitude.

Having outlined how supersymmetric models can lead
to a successful inflationary scenario without involving
small dimensionless couplings, we now briefly discuss
how this idea can be realized in realistic SUSY GUTs.
We would like the model to be well motivated from the
particle physics viewpoint. An important constraint stems
from the fact that the phase transition involving the gauge
nonsinglet fields (P, @) occurs at the end of inflation.
This transition does not lead necessarily to the monopole
production. This can be achieved by decoupling the in-

correction to V,«(S) in (5), and so cannot significantly
affect the above dynamics. This is not surprising since for
iSi ) S„ the nonsupersymmetric (mass) splitting inside
the @,@ superfields is ttp, 2 which, as we shall see, is
much larger than m . In such a situation the inflationary
scenario above is practically independent of the particular
mechanism of supersymmetry breaking.

Let us now compare the predicted quadrupole
anisotropy, based on (5), with the values (= 7 X 10 6)

measured by COBE. From the scalar density fluctuations
one has (see first paper in Ref. [8])

3

(AT 32m V2

i T g 45 V'Mp
Xg

1

(8mNg) & (Mx/Mp), (10)
where the subscript xg indicates the value of S as
the scale (which evolved to the present horizon size)
crossed outside the de Sitter horizon during inflation, and

Ng (= 50—60) denotes the appropriate number of e
foldings. The formula in (10) is remarkable in that the
fluctuation amplitude is proportional to (Mx/Mp), just as
in the cosmic string scenario. The amplitude turns out to
be in the right ball park, without having to fine tune addi-
tional parameters (such as dimensionless quartic couplings
and/or the mass of the inflaton). Using (10), we can es-
timate the fundamental parameter Mx to be on the order
of 10' GeV. We have ignored the contribution of the
tensor fluctuations to the anisotropy, because they are sup-
pressed by a factor of ~/[8m. (Ng)'/2] relative to the scalar
component in Eq. (10).

The spectral index n of the density fluctuations is given
by

1

flation from the fields whose vacuum expectation values
give rise to monopoles in the preinflationary epoch. Ex-
amples of the SUSY GUTs in which this new inflationary
scenario can be realized will be discussed elsewhere.
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