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We show that a good fitting to the first two years of observations by the Cosmic Background Explorer
Differential Microwave Radiometers of the two-point angular correlation function of cosmic background
radiation (CBR) temperature is given by models with a nonzero infrared cutoff k,

„

in the spectrum of
the primordial density perturbations. If this cutoff comes from the finiteness of the universe, say. a
topological T3 model, we find k,„—(0.3 —1.1)AH&, /c with confidence level 95k. Such a nonzero

k;„universe would also give a better match to the observations both of the rms quadrupole anisotropy
of CBR and of galaxy clustering.

PACS numbers: 98.70.Vc, 98.80.Es

Almost half a century ago, Infeld and Schild [1]
pointed out that if the size of the universe is finite, the
infrared cutoff k;„is then nonzero, and the infrared
divergences in quantum field theory are automatically
excluded. However, it was shown later that the problem
of infrared divergence in QED can be solved even
in an infinite universe (k;„=0), because the infrared

divergence in the radiative correction can be precisely
eliminated by adding the soft photon bremsstrahlung to
the vertex correction [2]. In this treatment we have, in

fact, assumed k;„(AE/ch, where b, E is the energy
resolution of the detection system.

For experiments done in physics laboratory the condi-
tion of k;„(AE/ch is always held. For instance, if
the size of the universe is of the order of today's horizon

cH0 —3000h ' Mpc (where h is the Hubble constant in

units of 100 km s ' Mpc '), in order to detect soft photons
with energy -k;„the energy resolution AE should be as
small as hH0. The uncertainty piinclple requires then that

the time needed to measure the cosmic infrared cutoff is

Ho . Therefore, it is impossible to detect the cosmic
infrared cutoff k;„bylocal experiments [3].

However, astrophysics does provide experiments, such
as cosmic background radiation (CBR), which have lasted
as long as the age of the universe, —Ho ', and are able to
measure k;„comparable with Ho/c. Using this idea, we

proposed that the CBR anisotropy is an effective tool to
detect the size of a small universe. We showed that the

ratios of quadrupole moment of CBR anisotropy to higher
order multipoles sensitively depend on the ratio L/(cHo ),
where L is the size of the universe [4]. To compare
this L/(cH0 ) dependence with the first-year data of
the Cosmic Background Explorer (COBE) Differential
Microwave Radiometers (DMR) [5], it has been found [6]
that the lower limit to the size of a cubic T3 universe

should be much larger than that given by the distributions
of galaxies and quasistellar objects [7].

In this Letter, we will show that a nonzero k;„is

possible. We are motivated by the two years of COBE

DMR observations of the CBR anisotropy (hereafter, the
two-year data), which has been available recently [8].
Compared with the first-year data [5], the quality of the

two-year data on many aspects has been significantly
improved. A new result is found to be that the rms

quadrupole amplitude Q, , = 6 ~ '3 p, K is significantly
less than the most likely quadrupole-normalized amplitude

Q -ps, which is 12.4+i'& p, K for n = 1.6, or 17.4
1.5 p, K for n = 1.0, where n is the index of the power-law
spectrum of density perturbation. This Q„Q ps

difference cannot be totally explained by cosmic variance

[8]. On the other hand, smaller Q, , may indicate
the lack of density fluctuations on the largest scales
[4]. Therefore, it is valuable to study the possibility of
explaining the Q, , —Q, , ps difference by models with

nonzero infrared cutoff k;„.
Since the two-year data were reduced in the scheme of

standard infiationary universe (II = 1, A = 0, and simply
connected spatial hypersurface), we consider a Gaussian

and adiabatic primordial perturbation with power-law

spectrum in a flat universe. The large-scale fluctuations

in the CBR temperature are given by [9]

AT Ho ~ 6(k)
2(-' ~ k' '

k

where y
= (2cHD ', A) is a vector of length 2cHO

pointing to the direction Q on the sky. B(k) is the Fourier
amplitude of the density contrast B(r). For a power-law

perturbation, (~ B(k)~~) can be written as [10]

2 '
1

where V„is a large rectangular volume, k = ~k~, and 50
is a constant determined by the variance of the perturbed

potential.
The observed temperature fluctuations of CBR on

the celestial sphere are usually expressed by spherical
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Hp(2l + 1) 227r ~ „4,2

P k
(3)

where ji (x) is the spherical Bessel function. Since
our defined CI is dimensionless, the COBE quadrupole
amplitude Q is related to our quadrupole amplitude C2 by

Q = C2 T, where T is the mean temperature of CBR.i/2

If the universe is of k;„=0, Eq. (3) becomes [11]

4c4 '
0

(4)

where the lower limit of the integration in Eq. (4) is taken
to be zero, because k;„=0. When n ( 3, Eq. (4) gives

harmonics AT/T(A) = gi age(O), where YP(A) are
the spherical harmonic functions. Defining a rotationally
invariant coefficient Ci —= g {iai i ), one found from
Eqs. (1) and (2) that

[8]. Comparing the measured correlation function to
the model of Eqs. (5) and (7), one can find a most
likely quadrupole-normalized amplitude Q, ps. The re-

sult based upon the first-year data does show Q -ps-
Q, [5]. Therefore, the model of k;„=0, i.e., Eqs. (4)
and (5), is consistent with the first-year data. However,
for the two-year data, the difference between the rms

quadrupole and the most likely normalized quadrupole is
as large as (2—4)o.. (Even taking the cosmic variance
into account, the difference is still significant at 90% con-
fidence level for n = 1) [8]. Therefore, one would no
longer be able to confidently say that the standard model

(n = 1) is totally compatible with the current COBE-
DMR observations.

We use the standard g2 technique to test the T3 mod-
els and to estimate the most Hkely model parameters
(quadrupole amplitude C2 and size L) by a g minimiza-
tion over the two-point angular correlation function. For
a given n and y/L, we estimate C2, ps by minimizing g
over the data:

2l + 1 p I (9 —n/2)I (l + n —1/2)
5 I (n + 3/2)I'(l + 5 —n/2)' [c, —c(8,)]'

o; + rr2„(8;)
' (8)

where C2 is the quadrupole moment in a k;„=0
universe.

Let us consider a k;„+0 universe, say, a cubic T3
universe [4], which is constructed from a flat and infinite
universe by the following identification on the three-
dimensional flat hypersurface: (xl + lL, x2 + mL, x3 +
nL) = (xl, x2, x3) for all integers l, m, n Lis .the size of
the universe. In this case, the coefficients CI should be
directly calculated from Eq. (3), i.e.,

H 2l+1
Cl

16 Apy
' "(yk;, ) g(ky)" j, (ky), (6)

16m.c4
k

where k;„=2m. /L, and the summation covers all pos-
sible states of the wave vector: k = k;„(l,m, n) Ob-.
viously, CI now depends on three parameters: (1) the
amplitude Ap of the perturbation (or the quadrupole mo-

ment C2 ), (2) the infrared cutoff k;„(orthe size of|i2

the universe L), and (3) the index n of the perturbation
spectrum. When k;„0,or L ~, one has CI CI.0

Therefore, this k;„dependence of CI provides an effec-
tive method to detect nonzero infrared cutoff k;„.

In the COBE DMR observations, two measurements are
independent: (a) the two-point angular correlation func-
tion C(8) of CBR temperature, and (b) the rms quadrupole
amplitude Q, , The two-point angular correlation func-
tion C(8) is related to CI by

C(8) = g, CiW (l)PI(cos 8),

where PI(x) is the Legendre function, and W(l) is a win-
dow function, which is W(l) = exp[ —1/2[l(l + l)/17. 82]]

where C; and o.; are, respectively, the observed values and
errors of the angular correlation at 8;, and o;„(8)is the
lo. cosmic variance of the C(8) [12]. In Eq. (8) we as-
sumed that the variances in different bins are mutually in-

dependent. This approximation is probably suitable for our
purpose, because it has been known, at least for the first-

year date, that the best fit amplitude of quadrupole does
not significantly depend on the nondiagonal part of the co-
variance matrix of C; [13]. Since o., „

is also proportional
to C2 -ps, we adopt an iteration procedure to calculate
C2 -ps. First we assume a zero o.„andfind out the best-
fitting value of C2 -ps. Using this value we calculate the
o.,„based on 100 Monte Carlo realizations of CI, and do
the minimization again and find out a new fitting value
of C2 -ps. Using this new C2 -ps we repeat the mini-
mization and find another more accurate value of C2 -ps.
The iteration procedure is stopped until the differences of

and of C2 -ps between the two consecutive minimiza-
tions are less than 0.1%. The final C2 -ps and g are our
desired values. In fact the calculation converges very fast,
and we need less than 5 iterations. Figure 1 shows the
goodness of the g2 fit of each model, i.e., the probability
P()g;„)that the experimental data are drawn from a re-
alization of the model. It can be seen from Fig. 1 that fork;„—0 models, i.e., L )) y = 2cHp ', the P()g;„)of
n = 1.6 is much greater than that of n = 0.6 or 1.0. This
result is the same as that of likelihood analysis done by
the COBE group. Although the n = 1.6 case can be com-
fortably accommodated by the two-year data [acceptance
probability P()g;„)—40%], the smaller indices n ~ 1,
which are favored more by current observational data of
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FIG. 1. P(& y',„)as a function of y/L He.re g, „
is

calculated by fitting the finite L universe model to the
COBE-DMR two-point angular correlation function of the
cosmic temperature fluctuations. The index n of power law
perturbations is taken to be 0.6, 1.0, and 1.6. The dot-dashed
line denotes P() g',„)= 5%.

galaxy clustering [14],have much lower acceptance prob-
ability.

Differing from the first-year data, a remarkable feature
shown in Fig. 1 is the high peak in P(~ g;„)space at

y/L —0.8. This means that the best fit value of the
infrared cutoff is k,„—0.87rHO/c. In Fig. 2 we plot
such a best-fitting curve as well as the two-year data of
C(0). We also plot the best-fitting curve of an k,„=0
universe (n = 1.6) in Fig. 2. It can be clearly seen from
both Figs. 1 and 2 that considering the possible existence
of a nonzero cosmic infrared-cutoff substantially improves
the model fit to the experimental data (even for n = 1.6),
and the most probable value of y/L is —0.8, which is
almost independent of n. At the 9S% confidence level,
we have 0.3 & y/L & 1.1 for n = 1, 0.5 & y/L ( 1.1 for
n = 0.6, and y/L & 1 for n = 1.6.

ij2
Figure 3 plots our best-fitting C&, , ps as a function of

y/L, where the index n is taken to be 0.6, 1.0, and 1.6
&/2

as well. %e plot the measured value of C2, ,- by the

1/2FIG. 3. The best fitted quadrupole, i.e., C2', s ps, as a function
of the size of the universe. The thick line denotes the rms

i/2
quadrupole measurement C2,-, and the dotted area is its lo-
region.

bold line in Fig. 3, and its lo- range by the dotted area.
One can find that the models with I. ~ 1.2y = 2.4cHO

'

give good agreement between Q,„„psand Q„„i.e. , their
difference is no longer larger than l o.. This result is also
almost independent of the power law index ~i.

Because a finite universe lacks the fluctuation power on
scales larger than its size, we require a larger amplitude
30 of the density perturbation to fit with the observational
C(8) [15]. However, larger b, o will lead to a stronger
clustering on smaller scales. Therefore we should study
whether the amplitude Ao in a k,„;„40 universe is
compatible with observed clustering of galaxies on scales,
say, Sh ' Mpc. In order to calculate the density Ouctu-
ations on smaller scales from a given 50 perturbation, we
need to choose the transfer function T(k) of linear growth
[9]. The T(k) in turn is mainly determined by the matter
composition of the universe. Here we use the T(k) of the
standard cold dark matter (CDM) model and of the cold
plus hot dark matter (CHDM) model (AcoM = 0.7, 0,„,=
0.3, and h = 0.5 [16]). Figure 4 presents the predicted

~ 1000

500

o

I
)

I I I 1

)
I I

Il= 1 T3
n=1.6 conn.

~ COBE data

10
----- CDM

——CHDM

I I I I 1 1IJg

0 ne& - - ~gj
X

I [ I [ [ [ 1 I I I ! I I ( 1 I I

0.1
O. i 10

0 50 100 150
8 (degrees)

FIG. 2. The observed angular correlation C&(8)T' and the-
best-fit curves by a T3 model with n = 1 and y/L = 0.80 (sol&d
line), and an infinite and flat universe with n = 1.6 (dashed
line).

FIG. 4. The predicted a-& in a cubic T3 models. Two types of
transfer functions are assumed: the standard CDM (dotted line)
and the CHDM (dashed line). The solid lines are the upper
and lower limits to a.&, given by statistics of galaxy distribution
[17).
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values of mrs, the rms density fluctuation of a sphere
r = 8h ' Mpc, as a function of y/L for n = l. In Fig. 4
we also plot a result of o.8 given by statistics of galaxy
distribution. By examining clusters of galaxies, White,
Efstathiou, and Frenk [17] suggest that in an Einstein-
de Sitter universe 0.8 is between 0.52 and 0.62. These
limits are shown as the solid lines in Fig. 4. Obviously,
small universes of y/L » 1 are not acceptable, because
they produce excessive clustering on Sh ' Mpc scale for
both T(k). The models of y/L ~ 1 are acceptable when

the CHMD T(k) is used. [Considering uncertainties in

the estimated limits of o.s and in the choice of T(k), we
caution readers against placing overaccurate constraints of
the o.s test on the universe sizes. ]

With reasonable transfer functions, the best-fitting
value of power index n = 1.6 for large universe

(L » 2cHp ) is hard to reconcile with the observational
data of galaxy clustering [14]. While the COBE-DMR
data allows the finite universe of L —1.2cHO

' to have
n = 1, which can be brought into agreement with

galaxy clustering for some reasonable transfer functions.
Therefore, compared with models of k;„=0 (infinite)
and large k;„(small) universes, the moderate-size (ork;„—vrHp/c) universe is in better agreement with the
observations when both the COBE-DMR result and the
clustering of galaxies are considered.

In summary, in terms of the three independent and
basic tests, i.e., C(8), Q„,and the galaxy clustering, a
good survived model among those discussed in the paper
is the one of a nonzero k;„universe. If this cutoff
comes from the finiteness of the universe, such as a
topological T3 model, the most probable value of k;„is
0.8m. Hp/c. However, it does not mean that the k;„can
only be given by a multiply connected topology like T3.
There are other mechanisms for k;„40. For instance,
in the standard inflationary universe, if the parameter N„,
in the infiation factor exp(N„,) is —54 (somewhat of
fine-tuning parameter may be needed), one would also
have an initial density perturbation with spectrum cut
off at k;„—7rHp/c. Regardless of these variousness
of possible explanations, one can conclude, at least, that
the COBE-DMR observation of AT/T is a powerful
tool to probe the cosmic infrared cutoff. The first two
years of the COBE-DMR observations reveal the possible
existence of nonzero infrared cutoff in the spectrum of
the primordial density fluctuations. It seems to be the
first time to derive an "observed" values of the cosmic
k;„with confidence higher than 95%. However, we
should remember the difficulty in the measurement of
Q, due to foreground contaminations. Therefore, in
order to discriminate various explanations, it is necessary
to have other tests. The amp1itude of octavopole C3 of
/J. T/T would be one of such tests [18]. We believe, more
convinced results related to the nonzero cosmic infrared
cutoff will be obtained as more observations of CBR
hT/T become available.
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