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The contractor renormalization group (CORE) method, a new approach to solving Hamiltonian lattice
systems, is introduced. The method combines contraction and variational techniques with the real-space
renormalization group approach. It applies to lattice systems of infinite extent and is ideal for studying
phase structure and critical phenomena. The CORE approximation is systematically improvable and
can treat systems with dynamical fermions. The method is tested using the (1+1)-dimensional Ising
model.
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Many problems in particle and condensed matter
physics cannot be studied with conventional perturbation
theory. Aside from Monte Carlo simulations, few tools
allow one to deal with general Hamiltonian systems and
fewer tools deal directly with their infinite-volume be-
havior. This paper introduces a new tool, the contractor
renormaliz ation group (CORE) approximation, which
can handle this class of problems. The CORE approach
is a simple, systematic procedure for improving any
Hamiltonian real-space renormalization group calculation.
Its virtues are the following: it is a variational procedure
which is systematically improvable to any desired degree
of accuracy; it applies to lattice systems of infinite extent,
allowing direct study of phase structure and critical phe-
nomena; it provides tools for error estimation; it requires
modest computer resources by modern standards; it is
complementary to Monte Carlo methods; systems with
dynamical fermions can be treated.

We start with a brief description of the CORE approxi-
mation, then illustrate and test the method in two different
applications to the (1+1)-dimensional Ising model.

Baisc ideas. —Choosing a good trial state is crucial to
the success of any variational calculation, especially one
involving a large number of degrees of freedom. The
Hamiltonian real-space renormalization group (RSRG)

method [1] is an algorithm for constructing a class of trial
states appropriate for lattice systems. In this approach,
one partitions the lattice into blocks containing a few sites
and diagonalizes the Hamiltonian associated with each
block. One then thins the Hilbert space by discarding
all states except those which are tensor products of some
chosen subset of low-lying block eigenstates, and an
effective Hamiltonian which describes the mixing of the
retained states is computed. This truncation process is
iterated until the effective Hamiltonian evolves into a
fixed form which can be easily diagonalized.

Unfortunately, simple RSRG truncation procedures
tend to severely underestimate the effects of block-to-
block couplings and this hinders the accurate description
of long-wavelength modes on the full lattice. Past
approaches to overcoming this problem have concentrated
on using larger blocks, increasing the number of states
retained per block, or introducing more sophisticated
truncation schemes [2,3]. The t expansion has also
been used [4]. The CORE approximation is a new
approach to this problem which emphasizes simplicity,
versatility, and insensitivity to the precise details of the
truncation scheme. This insensitivity, or robustness,
frees one from the need to develop clever truncation
algorithms or to retain many states per block. This
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tends to the corresponding eigenvalue e0 of H as r

becomes large In. general, Z(t) cannot be computed
exactly. Reliably approximating X'(t) is an integral part
of the steering process in the CORE method.

An important step in building a CORE approximation
to X(t) is to construct an easily computable operator T(t)
which closely approximates e ' for t in some range
0 ( t ( t,„. To find such an operator [5], first divide
H into two (or more) parts, i.e., H = Hi + H2, where the
individual parts H] and H2 are chosen such that e '"' and
e ' '- can be computed exactly. Next, rewrite e 'H as a
symmetric product

e =e e - e- e - e
—tH —tH 1 /2 —rH2/2 C&(I') —r H2/2 —IH 1 /2 (2)

where C3(t) is a sum of terms all of which begin in order
t3 or higher. The simplest T(t) is obtained by replacing
e -'' by the identity operator. One way to construct
a better approximation is to retain low-order terms in

Cp(t) and rewrite the exponential of these operators
as a symmetric product of explicitly computable terms.
Another is to use the operators T~(t) = [T(t/p)]t' In.
any case, it is very important to ensure the approximate
contractor satisfies all the symmetries of H.

Given a contractor T(t), ep can then be bounded from
above by computing

A best estimate for e0 is obtained by minimizing 'Er(t)
with respect to t and any parameters in iCi„„}. For a trial
state irIi», }= g,",n, iP, }, where (iP,}] is some set of
orthonormal states, one can show that minimizing X'r(t)
with respect to the a, parameters is equivalent to solving
the generalized eigenvalue problem

det (i[T(t)HT(t)]i —Ai[T(t) ]i) = 0,

feature of CORE, combined with its simplicity, greatly
enhances its usefulness for higher dimensional systems.
CORE also allows the use of manifestly gauge-invariant
RSRG schemes when studying lattice gauge theories;
such simple schemes cannot be exploited in the naive
multistate approach since gauge-noninvariant states are
necessary for coupling neighboring blocks after the first
truncation step. Furthermore, the CORE method does
not suffer from the series reconstruction difficulties which

plague the t expansion.
The basic idea of the CORE approach is to use

contraction techniques to steer the RSRG iteration. In the
limit t ~ ~, the operator e 'H contracts any trial state
irIi„„}onto the lowest eigenstate of H with which it has a
nonvanishing overlap. Therefore, the expectation value

(rIi». ie '"He '"i &I'...}
(rI) ie 2tH

i
(I—i )

where [[ ]i denotes truncation to the subspace spanned
by the i@,} states. In particular, for an operator 0,
i[O]i = POP where P is the projection operator P =

, i@,}(@,i. Thus, finding the best trial state irIi, .,„.} is
equivalent to diagonalizing the effective Hatniltonian

H„;,(t) = [IT(t) ]] ':--i[T(r)H T(t)]][[T(t) P-

Developing this operator in the RSRG iteration instead of
[[H ]i is a key innovation of the CORE approach.

The effective Hamiltonian defined by Eq. (5) cannot be
exactly computed. Another novel feature of the CORE
approach is the use of the finite cluster method to
evaluate H, &r(t). In this method, H„i.(t) (o.r any other
extensive quantity) is calculated as a sum of finite-volume
contributions (see Ref. [6]). The finite cluster method,
which will be described later when applying CORE to the

Ising model, is simple to implement, provides numerous
computational checks, and does little or no harm to the
variational bound in X'r(t)

The final ingredient in the CORE approximation is the
selection of a best value for t in each RSRG step. This
can be done in a number of' ways. One can extract the
coefficient of the identity operator in H„&~- and vary t

to minimize this quantity. Better yet, one can evaluate
8 f f in a simple product state to produce a mean-field
estimate of the ground state energy and minimize this with

respect to t.
In summary, the CORE method generates a sequence

of effective Hamiltonians H, r;(t,", ) by successive thinning
of degrees of freedom using the recursion relation

H, tr (t) = R„(t)[[T'"'(t)H,rr(t,*, )T'"(t) ]iR„(t), (6)

where R„(t) = i[T'"'(t)']i 'i- and the-contractor T'"'(t) is

constructed to approximate ex p [ tH, tr (t„*)]. —Equation (6)
is evaluated using the finite cluster method and a best
t = t„*+~ must be chosen. As the recursion proceeds, the
effective Hamiltonian evolves eventually into a simple
form which can be trivially diagonalized, yielding esti-
mates of the ground state energy and the energies of some
low-lying excited states.

The expectation value of an extensive operator 0 can
also be evaluated in the CORE method. One develops 0
using the same RSRG transformations as for H, producing

(n)
a sequence of effective operators O,rr(t„) The matrix.
element of O, q[- is then evaluated once H, qq has evolved to
the point where its ground state can be easily determined.

Note that from a programming point of view, CORE
calculations involve mainly matrix multiplications; diago-
nalizations and inversions of only very small matrices are
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already included in the single-block calculation:required. Often the matrices will be sparse and one can
exploit efficient algorithms for multiplying them.

The (I+I) di-mensional Ising model. W—e illustrate
and test the CORE approximation in two different applica-
tions to the (1+1)-dimensional Ising model. The Hamil-
tonian in this model is given by

h, «(t) = He(((t) —u S h, (( (t) —h, (( (t) u . (10)(2) (2) p (1R) (1L) g

Repeat this procedure for sublattices containing succes-
sively more connected blocks, then sum the contributions

h, «(t) from these sublattices with weights given by the
number of ways each sublattice can be embedded in the
full lattice. The stage at which one cuts off this cluster ex-
pansion determines the maximum range of the interactions
which will appear in H, ff ~ For our choices, the effective
Hamiltonian in this model takes the general form

Hts&llg: C& 0 - J + $& CT» J CT» J + 1

where j labels the sites in the infinitely long chain,
cq =cos(Am. /2), and sq = sin(An. /2), for 0~ A~ 1. This
model exhibits a second-order phase transition at A = 1/2.
For A(1/2, the ground state is unique and the order
parameter ((r„(j))=0, for some site j. When A)1/2,
the ground state is twofold degenerate and the order
parameter takes values (o;(j)) = ~[1 —cot2(Am. /2)]'t8.

The CORE approximation is best applied in the fol-
lowing sequence of steps: (I) choose an RSRG algorithm
by specifying how to partition the lattice into blocks and
which states to retain on each block; (2) specify the trunca-
tion order in the cluster expansion of H, ((, (3) deduce the
general form of H, (( based on the choices made in steps
(1) and (2); (4) construct a contractor T(t) which closely
approximates exp( —tH, «) and is easily computable; (5)
choose a method of determining the optimal value of t in
each RSRG step; (6) iteratively compute H, «using Eq. (6)
with initial condition H, ff = H, where H is the Hamilton-
ian of interest, until H,«can be easily diagonalized.

In our first application, we partition the lattice into two-
site blocks and truncate the Hilbert space to the lowest
two eigenstates in each block. Since our intention here is
to carry out only the simplest of calculations, we choose to
truncate the cluster expansion of H, (((t) after three-block
clusters. The general form of H,«(t) may then be deduced
by considering how it is computed in the finite cluster
method.

Evaluation of H, «(t) by the finite cluster method is
accomplished in the following sequence of steps. First,
compute H,«(t) using Eq. (5) on a sublattice which
contains only a single block. This yields

H, (((t) QC (t)0 ( J),

0 (j) = r(, (j)o,(j + 1) o „(j+ r), (12)

where c (t) are the couplings, n labels the differ-
ent types of operators, and j is a site label. There
are only two one-site operators: u(" = {u,z}, where
u denotes the identity operator. In other words,
the only one-site operators are 0„(j) = o„(j) = 1

and 0,(j) = o.,(j). There are three two-site opera-
tors: u 2 = {xx,yy, zz}. The three-site operators are

= {xzx,xux, xxz, zxx, yzy, yuy, yyz, zyy, zuz, zzz}.(') =~
Our first contractor is built using the approximation

exp[ —tH, (((t*)] = S (t)S(t), where the operator S(t) =
p {p,exp[tc (t*)0 (j)/2]}. The operators in the u
product are ordered according to their site range, increas-
ing in size from right to left. This operator can be sim-
plified using exp [yO ( j)] = cosh~y [1 + tanh yO ( j)),
where N is the (infinite) number of sites in the lat-
tice. Discarding the unimportant cosh~y factors, one
obtains a contractor given by T((t) = S, (t)S((t), where
S~(t) = p {p,[1 + tanh(c t/2)0 ( j)]}.

Last, t is chosen in each RSRG step to minimize the ex-
pectation value of H, (((t) evaluated in the mean-field state
given by ~P () = P, (cos 8~ t, ) + e'@ sin 8~ ),)), where
o, ( j)f t, ) =

/ t, ) and o.,( j)/ $, ) = —
/ $,). The matrix

element (P ( ~H, (((t)~ ti( () is minimized with respect to
t, 8, and P, simultaneously.

For our second application of the CORE method,
the lattice is divided into blocks containing three sites
and the Hilbert space is again truncated to the lowest
two eigenstates in each block. The cluster expansion
is taken only to three-block clusters, so H,« takes the
general form shown in Eqs. (11) and (12). We use an

approximate contractor given by Tq(t) = S2(t)S2(t) with
S2(t) = exp( —tV/2) exp( —tHb/2), where Hb contains all
intrablock interactions and V contains all interblock
operators (those which cross block boundaries). Note that
exp( —tHb/2) = +~ exp[ —tHb(p)/2] and exp( —tV/2) =
Q~ exp[ —tV(p)/2], where Hb(p) contains all operators
which solely act on block p and V(p) contains only

he(((t) He(((t) = c„' (t) u + c,' (t)o, ,
(~) (~)

where u is a 2 x 2 identity matrix. Next, calculate H, (((t)
for a theory defined on a sublattice made up of two
adjacent blocks. This Hamiltonian takes the form

where L and R refer to the left and right blocks,
respectively, in the cluster. Remove from the two-block
calculation those contributions which arise from terms

H, (((t) = c„''(t)u u + c' ~(t)((r u + u o.).(2)

+ c' '(t)o- (r ..+c' '(t)o. , o+c,,'(t)o, o, , (9). . -
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FIG. l. Fractional error 6,0 in the ground-state energy density
estimates against A. Results using T~' (dashed curve), T~"

(solid), and T2 (diamonds with dotted curve, to guide the eye)
are shown.

interactions between block p and p + l. The operators

Hb(p) and V(p) can be exponentiated numerically with

no difficulty. We fix t by minimizing the expectation
value of H, rr in the mean-field state ~P r) as described
previously.

Selected estimates Ep of the ground-state energy den-

sity from both variants of the CORE approach described
above are compared to the exact [7] energy density eo in

Fig. 1. Calculations were done using T,"(t/n) and T2'(r/n)
for various values of n. The fractional errors 6„shown
in this figure are defined by 6„= ~(Ep Eo)/Eo~. Se-
lected mass gap estimates 5 are compared to the exactly
known gap in Fig. 2. Figure 3 illustrates the amounts

by which the T2 CORE estimates of the magnetization
3H = ~(o, ( j))~, for some site j, differ from the exact
values. The accuracy of the results is striking, espe-
cially considering that only the first three terms in the

cluster expansion were included in the calculations. The
CORE method reproduces the correct location of the criti-
cal point with remarkable precision. The critical exponent

g was extracted from a straight-line fit of our T2' results

for ln 94 by the form ln 3H = g ln(1 —A2/A'-), where

A = tan(Avr/2), A, = tan(A, vr/2), and A, is our com-
puted value for the critical point. For A, . = 0.5053 and ht-

ting in the range 0.51 ~ A ~ 1.0, we obtain g =- 0.12437.
to be compared to the exact value of 0.12~. The CORE
procedure produces better results for a given effort than
multistate RSRG methods previously used [3]. The re-

sults also compare very favorably to previous t-expansion
calculations [4]. Using larger blocks or including more
terms in the cluster expansion should further improve
these results.

ln conclusion, given its simple theoretical foundations,
the relative ease of implementation, and our success in

applying it to the (1+1)-dimensional Ising model, we be-
lieve that the CORE approximation will prove to be a
powerful tool for analyzing intrinsically nonperturbative
systems. One particularly exciting feature of this method
is that it can be applied to systems containing dynami-
cal fermions, systems which resist treatment by present
stochastic means. In general, we feel that the possibil-
ity of eliminating the quenched approximation in lattice
quantum chromodynamics, better studying spontaneous
symmetry breaking and other nonperturbative phenomena
in relativistic field theories, and probing the low-energy

physics of the Hubbard and t- J models warrants further
work with the CORE approximation.
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