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Phase Transitions in BaTi03 from First Principles
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We develop a first-principles scheme to study ferroelectric phase transitions for perovskite
compounds. We obtain an effective Hamiltonian which is fully specified by first-principles ultrasoft
pseudopotential calculations. This approach is applied to BaTi03, and the resulting Hamiltonian is
studied using Monte Carlo simulations. The calculated phase sequence, transition temperatures, latent
heats, and spontaneous polarizations are all in good agreement with experiment. The order-disorder
versus displacive character of the transitions and the roles played by different interactions are discussed.

PACS numbers: 77.80.Bh, 61.50.Lt, 64.60.Cn, 64.70.—p

Because of their simple crystal structure, the cubic
ferroelectric perovskites present a special opportunity for
the development of a detailed theoretical understanding
of the ferroelectric phase transition. However, even in
BaTi03, a much-studied prototypic' example of this class
of compounds [1],many aspects of the phase behavior are
far from simple. BaTi03 undergoes a succession of phase
transitions, from the high-temperature high-symmetry
cubic perovskite phase (Fig. 1) to slightly distorted fer-
roelectric structures with tetragonal, orthorhombic, and
rhombohedral symmetry. There is increasing evidence
that the cubic-tetragonal transition, at first thought to
be of the simple displacive kind, may instead be better
described as of the order-disorder type.

A comparison with the related cubic perovskites indi-
cates that this and other aspects of the phase transforma-
tion behavior in BaTi03 are not universal, but rather must
depend on details of the chemistry and structural energet-
ics of the particular compound. Therefore, it is of the first

FIG. 1. The structure of cubic perovskite compounds BaTi03.
Atoms Ba, Ti, and 0 are represented by shaded, solid, and
empty circles, respectively. The areas of the vectors indicate
the magnitudes of the displacements for a local mode polarized
along x.

importance to develop a microscopic theory of the relevant
materials properties. The value of a microscopic approach
has long been appreciated, but its realization was hindered

by the difficulty of determining microscopic parameters
for individual compounds. The forms of phenomenolog-
ical model Hamiltonians [1—4] were limited by the avail-
able experimental data, leading to oversimplification and

ambiguities in interpretation. For the perovskite oxides,
empirical [5] and nonempirical pair potential methods [6]
did not offer the high accuracy needed for the construction
of realistic models. Recently, high quality first-principles
calculations within the local density approximation (LDA)
have been shown to provide accurate total-energy surfaces
for perovskites [7—10]. While an ab initio molecular-
dynamics simulation of the structural phase transition is
not computationally feasible at present, the application of
these first-principles methods can clearly form a founda-
tion for the realistic study of the finite-temperature phase
transitions.

In this paper, we pursue a completely first-principles
approach to study the ferroelectric phase transitions in
BaTi03. In particular, we (i) construct an effective Hamil-
tonian to describe the important degrees of freedom of the
system [11,12], (ii) determine all the parameters of this ef-
fective Hamiltonian from high-accuracy ab initio LDA cal-
culations [9,13,14], and (iii) carry out Monte Carlo (MC)
simulations to determine the phase transformation behavior
of the resulting system. We find the correct succession of
phases, with transition temperatures and spontaneous po-
larization in reasonable agreement with experiment. Strain
coupling is found to be crucial in producing the correct suc-
cession of low-symmetry phases. Finally, by analyzing the
local distortions and phonon softening, we find the cubic-
tetragonal transition in BaTi03 to be intermediate between
the displacive and order-disorder limits.

BrieAy, the effective Hamiltonian is constructed as fol-
lows. Since the ferroelectric transition involves only small
structural distortions, we represent the energy surface
by a Taylor expansion around the high-symmetry cubic
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perovskite structure, including fourth-order anharmonic
terms. Because the contribution to the partition function
decays exponentially with increasing energy, we simplify
this expansion by including only low energy distortions.
Among all the possible phonon excitations, the long-
wavelength acoustic modes (strain) and lowest transverse-
optical phonon modes (soft modes) have the lowest energy.
It is therefore our approximation to include only these two
kinds of phonon excitations, thus reducing the number of
degrees of freedom per unit cell from 15 to 6. This approx-
imation could later be systematically improved, or entirely
removed, by including higher-energy phonons.

It is straightforward to describe the strain degrees of
freedom associated with the acoustic modes in terms of
displacement vectors v~ associated with each unit cell /.
In a similar manner, we introduce variables oI to describe
the amplitude of a "local mode" associated with cell l.
The properly chosen local mode should reproduce the soft-
mode phonon dispersion relation throughout the Brillouin
zone, preserve the symmetry of the crystal, and minimize
interactions between adjacent local modes. The local
mode chosen for BaTi03 is shown in Fig. 1. The terms in
our Taylor expansion of the energy in the variables [u) and

[v) are organized as follows: (i) a soft-mode self-energy
E"'r([u)) containing intrasite interactions to quartic an-
hartnonic order; (ii) a long-range dipole-dipole coupling
Edt" ({u)) and a short-range (up to third neighbor) correc-
tion E'""'((u)) to the intersite coupling, both at harmonic
order; (iii) a harmonic elastic energy E""(iv)); and (iv)
an anharmonic strain —soft-mode coupling E'"'((u), [vj)
containing Gruneisen-type interactions (i.e., linear in
strain and quadratic in soft-mode variables). The cubic
symmetry greatly reduces the number of expansion
coefficients needed. All the expansion parameters are
determined from highly accurate first-principles LDA
calculations applied to supercells containing up to four
primitive cells (20 atoms). The calculation of the needed
microscopic parameters within LDA for BaTi03 has been
made possible by the use of Vanderbilt ultrasoft pseu-
dopotentials [13], which make large-scale calculations
tractable at the high level of accuracy needed, and by the
recent theory of polarization of King-Smith and Vanderbilt
[15], which provides a convenient method of calculating
the dipolar interaction strengths [14]. The details of
the Hamiltonian, the first-principles calculations, and
the values of the expansion parameters will be reported
elsewhere [16].

%e solve the Hamiltonian using Metropolis Monte
Carlo simulations [17,18] on an L x L x L cubic lattice
with periodic boundary conditions. Since most energy
contributions (except Edt") are local, we choose the single-
Aip algorithm and define one Monte Carlo sweep (MCS)
as L3 flip attempts.

The ferroelectric phase transition is very sensitive to
hydrostatic pressure, or, equivalently, to lattice constant.
The LDA-calculated lattice constants are typically 1% too
small, and even this small error can lead to large errors
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in the zero-pressure transition temperatures. The effect
of this systematic error can largely be compensated by
exerting a negative pressure that expands the lattice con-
stant to the experimental value. For BaTi03, we choose
P = —4.8 GPa which gives the best overall agreement for
the computed volumes for the four phases with their ex-
perimental values. The following simulations and analy-
sis are for this pressure.

In our simulation, we concentrate on identifying the
succession of different phases, determining the phase
transition temperatures, and extracting qualitative features
of the transitions. %e also focus on identifying the
features of the Hamiltonian which most strongly affect
the transition properties. For these purposes, it is most
convenient to monitor directly the behavior of the order
parameter. In the case of the ferroelectric phase transition„
this is just the polarization vector (or, equivalently,
the soft-mode amplitude vector u) averaged over the
simulation cell. To avoid effects of possible rotation of
the polarization vector and to identify the different phases
clearly, we choose to accumulate the absolute values
of the largest, middle, and sma1lest components of the
averaged local-mode vector for each step, denoted by
u~, u2, and u3, respectively (u~ & u: ~ u3). The cubic
(C), tetragonal (T), orthorhombic (0), and rhombohedral
(R) phases are then characterized by zero, one, two, and
three nonzero order-parameter components, respectively.
As a reference, the average local-mode amplitude u =
g; (u;~ jN is also monitored. Here, u; is the local mode
vector at site i and N is the total number of sites.

Figure 2 shows the quantities u~, u2, u3, and u as
functions of temperature in a typical simulation for an

L = 12 lattice. For clarity, we show only the cooling
down process. The values are averaged over 7000 MCS's
after the system reaches equilibrium, so that the typical
fluctuation of order parameter components is less than
J0%. %e find that u~, u~, and u3 are all very c1ose to zero
at high temperature. As the system cools down past 295 K,
w] increases and becomes significantly larger than uq or u~.

I

0.3 — &-Do@
C3- - -~~

E3

~o~o a

0

0

0.P. ~$- g.

-I
0

i
~ lla

0 7 C
0 0

~i+~., x.q5f:a:g:R-:,:.-I. -, ::.,'.g)
200 300 400

Temperature (K)
I.IG. 2. The averaged largest, rniddle, and smallest compo-
nents u&, u2, u3 and amplitude u of local modes as a function
of temperature in a cooling-down simulation of a l2 & l2 & 12
lattice. The dotted lines are guides to the eyes.



VOLUME 73, NUMBER 13 PHYSICAL REVIEW LETTERS 26 SEPTEMBER 1994

This indicates the transition to the tetragonal phase. The
homogeneous-strain variables confirm that the shape of
the simulation cell becomes tetragonal. Two other phase
transitions occur as the temperature is reduced further. The
T Ot-ransition occurs at 230 K (sudden increase of u2) and
the 0-R transition occurs at 190 K (sudden increase of u3).
The shape of the simulation cell also shows the expected
changes. The sequence of transitions exhibited by the
simulation is the same as that observed experimentally.

The transition temperatures are located by careful
cooling and heating sequences. We start our simulation
at a high temperature and equilibrate in the cubic phase.
The temperature is then reduced in small steps. At each
temperature, the system is allowed to relax for 10000
MCS's (increased to 25000 and then to 40000 MCS's
close to the transition). After each transition is complete,
the system is reheated slowly to detect any possible
hysteresis. The calculated transition temperatures are
shown in Table I. Simulations for three lattice sizes are
performed; the error estimates in the table reAect the
hysteretic difference between cooling and heating, which
persists even after significant increase of the simulation
time. The calculated transition temperatures are well
converged with respect to system size, and are in good
agreement with experiment. The saturated spontaneous
polarization P, in different phases can be calculated from
the average local-mode variable. The results are also
shown in Table I. We find almost no finite-size effect,
and the agreement with experiment is very good for the
0 and T phases. The disagreement for the R phase may
be due in part to twinning effects in the experimental
sample [19].

One way to determine the order of the transition is to
calculate the latent heat. An accurate determination of
the latent heat would require considerable effort; here, we
only try to provide good estimates. We approach the tran-
sition from both high-temperature and low-temperature
sides until the point is reached where both phases appear
equally stable. The difference of the average total energy
is then the latent heat [20]. This estimate should be good
as long as some hysteresis is present. The calculated la-
tent heat (Table I) is in rough agreement with the rather
scattered experimental data We find. that, taking into ac-
count finite-size effects, the latent heats for all three tran-
sitions are significantly nonzero, suggesting all transitions
are first order. For the T-0 and 0-R transitions, this is
consistent with Landau theory, which requires a transition
to be first order when the subgroup relation does not hold
between the symmetry groups below and above T, .

Next, we investigate the extent to which the cubic-
tetragonal transition can be characterized as order disor-
der or displacive. In real space, these possibilities can
be distinguished by inspecting the distribution of the
local-mode vector u; in the cubic phase just above the
transition. A displacive (microscopically nonpolar) or
order-disorder (microscopically polar) transition should
be characterized by a single-peak or double-peak struc-

TABLE I. Calculated transition temperatures T„saturated
spontaneous polarization P„and estimated latent heat l, as a
function of simulation cell size.

P, (C/m')

I (J/mol)

Phase

0-T
T-0
C-T
R
0
T

0-R
T-0
C-T

L = 10

197 ~ 3
230 + 10

—290
0.43
0.35
0.28
50
90

L=14
200+ 5
230 ~ 10
297 ~ 1

0.43
0.35
0.28
60
100
150

Expt. '

183
278
403
0.33
0.36
0.27

33-60
65-92

196-209

'T. Mitsui et al. , Landolt-Bornstein Numerical Data and Func-
tional Relationships in Science and Technology (Springer
Verlag, 1981), NS, IIV16.

ture, respectively. The distribution of u, at T = 320 K is
shown in Fig. 3. It exhibits a rather weak tendency to a
double-peaked structure, indicating a transition which has
some degree of order-disorder character. We also see in-
dications of this in the u-T relation in Fig. 2; even in the
cubic phase, the magnitude of the local-mode vector u is
significantly nonzero and close to that of the rhombohe-
dral phase. Although the components of the local modes
change dramatically during the phase transition, u only
changes slightly.

In reciprocal space, a system close to a displacive
transition should show large and strongly temperature-
dependent fluctuations of certain phonons (soft modes)
confined to a small portion of the Brillouin zone (BZ).
For an extreme order-disorder transition, on the other
hand, one expects the fiuctuations to be distributed over
the whole BZ. For BaTi03, we calculated the average
Fourier modulus of the soft T Omode (iu(q)(2) a-t several
temperatures just above the C-T transition. A strong
increase of (iu(q)i2) as T T, would indicate phonon
softening. As expected, we do observe this behavior for
modes at I . While these modes become "hard" rather
quickly along most directions away from I, they remain
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FIG. 3. The distribution of a Cartesian component of the local
mode variable in the cubic phase at T = 320 K.
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soft at least halfway to the BZ boundaries along the (100)
directions, again indicating some order-disorder character.

Our theoretical approach allows us to investigate the
roles played by different types of interaction in the phase
transition. First, we study the effect of strain. The strain
degrees of freedom were separated into local and homo-
geneous parts, representing finite- and infinite-wavelength
acoustic modes, respectively. Both parts were included in

the simulations. If we eliminate the local strain (while still

allowing homogeneous strain), we find almost no change
in the transition temperatures. This indicates that the ef-
fect of the short-wavelength acoustic modes may not be
important for the ferroelectric phase transition. If the ho-
mogeneous strain is frozen, however, we find a direct
cubic —rhombohedral phase transition, instead of the cor-
rect series of three transitions. This demonstrates the im-

portant role of homogeneous strain. Second, we studied
the significance of the long-range Coulomb interaction
in the simulation. To do this, we changed the effective
charge of the local mode (and thus the dipole-dipole in-

teraction), while modifying other parameters so that the
frequencies of the zone-center and zone-boundary phonons
remain in agreement with the LDA values. We found only
a slight change (10%)of the transition temperatures when

the dipole-dipole interaction strength doubled, but elimi-
nation of dipole-dipole interaction results in a dramatic
change (in fact the ground state becomes a complex antifer-
roelectric structure). This result shows that it is essential
to include the long-range interaction, although small inac-
curacies in the calculated values of the effective charges
or dielectric constants may not be very critical. On the

other hand, our tests do indicate a strong sensitivity of
the T,. 's to any deviation of the fitted zone-center or zone-

boundary phonon frequencies away from the LDA results.
Thus, highly accurate LDA calculations do appear to be a
prerequisite for an accurate determination of the transition
temperatures.

Our approach opens several avenues for future study,
Allowing a higher-order expansion of the energy surface
might allow an accurate determination of the phase dia-

gram. More extensive Monte Carlo simulations on larger
systems, and with careful analysis of finite-size scaling,
could provide more precise transition temperatures, free
energies, and latent heats [21]. Finally, the theory would

be more satisfying if the 1% underestimate of the lat-

tice constant in the LDA calculation could be reduced or
eliminated.

In conclusion, we have obtained the transition se-

quence, transition temperatures, and spontaneous polariza-
tions of BaTi03 and found them to be in good agreement
with experiment. We find that long-wavelength acous-
tic modes and long-range dipolar interactions both play
an important role in the phase transition, while short-

wavelength acoustic modes are not as relevant. The C-T

phase transition is not found to be well described as a sim-

ple displacive transition.
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