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Wake Fields in Semiconductor Plasmas
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It is shown that an intense short laser pulse propagating through a semiconductor plasma will generate
longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to
study nonlinear optical phenomena. For narrow gap semiconductors (for example, Insb) with Kane-type
dispersion relation, the system can simulate, at currently available laser powers, the physics underlying
wake-field accelerators.

PACS numbers: 72.30.+q, 42,65.—k

The excitation of large-amplitude plasma waves is
one of the main problems in the development of new
plasma-based high energy particle accelerator schemes.
Of several proposed schemes [1], the laser wake-field
accelerator concept seems to be the most promising.
In this case, an ultrashort laser pulse (TL = co„', the
inverse plasma frequency) excites a periodic comoving
longitudinal wave in its wake (wake field), which can
then be used for accelerating resonant particles. The
translation of this concept into reality is, however, beset
with difficulties. It has been shown that relativistically
intense laser pulses will be needed to create sizable wake
fields [2]. In fact, the creation of a relativistic plasma
with vE/c —1 (necessary for this process) requires field
intensities in excess of 10s W/cm2, making it difficult to
carry out experimental investigations. Surely, a possible
simulation of a relativistic plasma, where the physical
mechanisms underlying the wake-field accelerator concept
can be tested, would be highly welcome.

Such a possibility could be realized in a semiconductor
plasma. In many semiconductors, the nonlinearity in
the transparency region is predominantly due to the
nonparabolicity of the conduction band dispersion relation
[3]. Because of the crystal periodic potential (the cause
of the band structure), the Hamiltonian of the conduction
band electrons for narrow gap semiconductors formally
resembles a relativistic Hamiltonian. This Kane-type
dispersion can be written as

H=(m c +c p)'

where c+ = (Fs/2rne)' 2 plays the part of the speed of
light, m~ is the effective mass of the electrons at the
bottom of the conduction band, and Fg is the width of
the gap separating the allowed bands.

Since the conduction band is partially empty, the
electrons can accelerate under the effect of an electric
field. Nonparabolicity of the conduction band implies a
nonlinear electron velocity-momentum dependence (v =

BH/Bp) which, in turn, leads to a nonlinear dependence
of the current density on the electric field. This nonlin-

earity dominates the nonlinearity due to electron heating,
provided the relevant wave frequencies are considerably
higher than the effective collision frequency.

The characteristic velocity ce that enters the Kane
dispersion law is much less than the speed of light (for
example c~ = 3 X 10 3c for InSb). Because of this, the
jitter velocity of the electron fluid in the conduction band
can become "relativistic" even when modest intensity
electromagnetic fields are applied.

This similarity has been exploited, and methodologies
of relativistic plasmas have been used to develop a pseu-
dorelativistic dynamics for the conduction electrons in
order to delineate the optical properties of narrow-gap
semiconductors. In Ref. [4], it is shown that due to the
velocity-dependent mass of the conduction electrons, it
is possible to have self-focusing laser light in InSb. In
Ref. [5], different kinds of parametric excitation of den-

sity waves, and parametric amplification of electromag-
netic waves are presented. In Ref. [6], the possibility of
finding localized solitonic structures and nonlinear self-
interaction of electromagnetic waves in semiconductors
with Kane-type dispersion law is explored.

Up until now, the dynatnical properties of the non-
linear interaction of electromagnetic waves in the nar-
row gap semiconductors have been studied mainly on a
nanosecond or even slower time scale. Current technol-

ogy, however, can provide us with intense laser sources
in the femtosecond range making it possible to inves-
tigate fast nonlinear processes in semiconductors. In
fact, using picosecond pulses, experimental studies of
rapid dynamical behavior of optical nonlinearities in InSb
have already begun [7]; beam distortions due to self-
defocusing, and the spectral broadening due to self-phase
modulation have been reported.

In this paper we demonstrate that the short (picosecond-
ferntosecond) intense pulses can be effectively used to ex-
cite measurable wake fields in a semiconductor plasma.

0031-9007/94/73(13)/1837(4)$06. 00 1994 The American Physical Society 1837



VOLUME 73, NUMBER 13 PHYSICAL REVIEW LETTERS 26 SErrEMBER 1994

VxB=-eo 8E
c Bt

nv, (2)

The nature of the wake field generated will reAect impor-
tant characteristics of the semiconductor. We concentrate
on semiconductors of the Kane-type because they, in addi-
tion, provide us with a laboratory to simulate (with much
smaller laser intensities) a relativistic plasma.

The system of equations for electromagnetic oscilla-
tions in a hydrodynamic gas of electrons in a semicon-
ductor is [4,5],

of relativistic laser pulses with a cold plasma. The
condition of the absence of generalized vorticity

and Eq. (7) allows us to rewrite Eq. (6) in the form

Bp + mgc~V(1 + p /m~c~)'/ = —eE,

and in the contexts of Eqs. (8) and (9), Eq. (2) becomes

1 BBV'xB=-—
c Bt

eoV E = 4n.e(no —n), (4)

Eg Bp (c.&' a
V & V x p+ — + ~om+I — —Vyc2 gt2 (c j Bt

2

+ep
2

——= 0. (10a)c2 no y

Bn—+ V (nv) =0,
Bt

(5) Using Eqs. (3) and (9) the electron density can be
expressed as follows:

Bp e+ (v V)p = —eE ——(v x B),
Bt C

n
1 +

no

1

2 (

—V p+m+c~b, y~,
m~co~, &~t

(10b)

where n is the electron concentration, ep is the dielectric
constant of the lattice, and p is the quasimomentum of the
conduction-band electrons. This system is augmented by
the relation

p
mg(1 + p /mgcg)'/'

(7)

for the Kane-type semiconductors. Equations (6) and

(7) are valid if cu » TL
' » v, where cu and TL are,

respectively, the frequency and the time duration of the
laser pulse, and v is the electron collision frequency.
The maximum intensity of the laser pulse is limited
by the breakdown of the semiconductor (the surface
ionization intensity for InSb is 3 X 107 W/cm [5]). If,
however, the pulse width TL (( Tb„where Tb, is the
breakdown development time, there is no time for the
breakdown to occur, and pulses of high intensity can
indeed propagate in semiconductor plasmas. In a pure
n-InSb semiconductor at liquid nitrogen temperature, the
characteristic time of breakdown is Tb, = 10 'p sec, [6],
and consequently pulses of Tt ~ 10 'p sec can safely
propagate through the system. Another restriction on the
laser field amplitude comes from the possible inhuence
of external field on the band structure of semiconductors
and of the "tunneling" (or "multiphoton") absorption of
the radiation. In this case it is possible to generalize the
system of equations (2)—(7) by introducing an effective
"damping" term in the Eq. (6), and a "particle source"
term in Eq. (5). Such terms will play an important role
for the "ultrarelativistic" case when p2/m~c~ ) 1. For
the present paper these complicating effects are neglected.

The system of equations (2)—(7) formally resembles
the set of equations derived in Ref. [8] for the interaction
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where co~, = (4me2np/. m+ep)'/2 is the effective Langmuir
frequency and y is the relativistic factor

y = (1 + +~/m~c~)»2

~ pi 2 ~ p~ n pg
EO C + E'OQP~ = 0.

Bt2 Bz'2 *'
no

(12)

Also for the 1D problem, Eq. (9) reduces to a simple re-
lation between the electron momentum and the transverse
electric field (associated with laser radiation)

Bp~ = —eKg.
Bt

(13)

which, on integration, yields p = (e/c)A&, [a relation
also derivable from (8)], where A~ is the vector potential
of an electromagnetic Geld. For the longitudinal e1ectron
motion, we obtain

'+mac', —1+, 2' ~
=e

&z ( mgcg j &z
(14)

The set of equations (10a) and (10b) with the definition
(11) completely describes the propagation of relativistic
electromagnetic radiation in the semiconductors with the
electron dispersion law given by the two-band approxima-
tion of Kane's model.

We now seek longitudinal wave (wake-field) solutions
for this system. For simplicity we consider a one-
dimensional problem assuming that the laser pulse propa-
gates along the z axis, and all physical quantities depend
on only the space coordinate z and time t. The transverse
components of the momentum Eq. (10) can be written as
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where q is the scalar potential of excited longitudinal
field.

A propagating circularly polarized laser pulse, with
mean frequency coo, and mean wave number ko, can be
described by (p~ —A~)

pg =
2 (x + iy)p~(z —

vent, t)

—
ug p, + (1 + (p~(' + p,')'/' = 1 + P, (16)

condition that the fields vanish at infinity, and assuming
vz8/Bg » 8/Br, Eqs. (5) and (14) can be integrated to
give

X exp( its—pt + ikpz) + c.c. , (15) n ~ v, t

np ( uz)
(17)

where p& is a slowly varying field amplitude
(top » a/at, k, » a/Bz), v~ is the group velocity of
the electromagnetic wave packet, and cop and kp satisfy
the dispersion relation coo = cog, + eo 'koc . Note that
for the circularly polarized waves, the electron energy
does not depend on the fast time, and consequently there
is no anharmonic generation.

Using new variables g = z —v~t, r = t, vz = vz/ce,
and p = p/mece, P = ey/m~c~, invoking the boundary

where v, = p, /(1 + p2)'/2. Simple manipulations yield

ynp [(1 + P) —(1 —u ) (1 + Ip~( ] /

which in conjunction with Eq. (12) and Poisson Eq. (4),
define the final set of equations describing the propagation
of intense laser radiation in Kane-type semiconductors,

~Pi 2~PJ2 2
Qg

z
*~ [(1+ P) (1 u )(1+ Ipz(]

8 P to~, 1 ue(1 + P)
c2+ (1 —u') [(1+ y)' —(1 —u')(1+ (pal')]'/

(20)

where the normalized group velocity has the form
2 ) I/2

chic

E cd() )
(21)

A similar set of equations is derived in Ref. [9] for
the interaction of a laser pulse with an electron plasma.
For the transparent plasma (cop ) co~, ), Eq. (21) implies
that the normalized group velocity obeys 1 (& uz &
(c/c+). After this, the similarity with the electron plasma
breaks down. In the semiconductors, the propagation is
"superluminous, " and Eqs. (19) and (20) simplify to

~Pl 2~PL + 2 P~2 2

at' a ' ' *'(1+
( (')'/'

8$ co~, 1+/
cpu' (1 + (p~( )'/' (23)

From Eq. (22), one can see that the laser field does not
"feel" the excited longitudinal waves. In Ref. [6), an
equation similar to (22) was derived, and solved with
the assumption that the electron density variation is small.
Although solving Eq. (22) is not the subject of this paper;
some explanatory comments are in order. From Eq. (22)
one can see that the modulational instability distorting
the laser pulse will develop during the time T & cop/tp, .
However, in our case T » co~, (cup && co~,), and during
this period, the laser pulse covers a distance much longer

1+ 4'

g~2 (1 + (p (2)1/2
' (24)

For a square-shaped laser pulse of length L,

I pi(rt) I' = ppz[H(ri —L) —H(n)1. (25)

where H(rt) is the Heaviside unit function, an analytic
solution of Eq. (24), with the natural boundary conditions
[$(0) = 0, P' = 0], is readily obtained. Inside the pulse
(0 & g & L) we have

Pp = 2(yp —1) sin
&2y.'") (26)

where yp = (1 + pp)'/2. In the region behind the pulse
(rt & L) we obtain

P = P sin(rt + Pp). (27)
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than the characteristic longitudinal wavelength. Because
of this, we may safely assume that, during the interaction
time of interest, the laser field remains unchanged, and
can be presumed to be a "given. " One can then interpret
Eq. (23) as a differential equation for the wake field qr for
a given specified (and not an evolving field) p&. In terms
of the dimensionless coordinate ri = g(toe, /c), Eq. (23)
can be rewritten as
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Matching solutions (28) and (29) at g = L for the wake-
field amplitude, we get

P = 2(yp —I)sin,
&2

1 + —cos
&2yo") yo &2yo" &

It is clear from Eq. (28) that if

. I'

sin~, &z
= 0.

2yo

(28)

(29)

there is no wake-field generation. The maximal value of
the wake field potential is

A,„=2(yp —1) . (30)
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FIG. 1. Plote of the wake-field potential @ (solid line) as a
function of 71 for a Gaussian pulse: (p~( = O.Sexp( —g2/2)z
(dotted line).

Thus by solving a simple analytic problem we have
demonstrated the existence of wake fields. For more
realistic pulse shapes, Eq. (24) can be solved numerically.
The numerical solution for a Gaussian pulse is presented
in Fig. 1, from where it is easy to see that the pulse with
duration TL —2n/co~, gives the maximum value for the
wake-field amplitude.

Let us now apply the theory to the InSb plasma
for which the relevant parameters are T = 77 K,
ms = m, /74, eo = 16, cq = c/253, n = 10' cm
(co~, = 1.2 X 10'z rad/sec), and v/co~, —10 2. For
the laser radiation, the following values can be em-

ployed: cuo = 1.74 X 10'4 rad/sec, TL = 5 X 10 " sec,
and a moderate electric field intensity F~ = 105—
107 V/cm. This combination will generate a wake field
at wavelength A = 1.5 mm with an excited longitudinal
electric field in the range Et, = 0.03—42 V/cm.

In conclusion, we have shown that in InSb, it is pos-
sible to generate easily measurable wake fields with cur-

rently available technology. The presented mechanism for
the nonlinear coupling between photons and plasmons is
an efficient way to produce finite-amplitude plasma ex-
citations (wake fields) in semiconductors. Although we
have concentrated in this paper on Kane-type semiconduc-
tors, the wake-field generation could take place in a vari-

ety of semiconductors. Whenever the laser pulse length

TL —cu, ', the plasma frequency, wake-field excitation
will occur. The study of photon-plasmon coupling in this
particular case, in addition to providing a basic diagnos-
tic for studying nonlinear optical properties in solid-state
plasmas, also allows us to simulate the wake-field gen-
eration by relativistically strong laser radiation in usual

plasmas.
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