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Bonding-Geometry Dependence of Fractal Growth on Metal Surfaces
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Mechanisms for the formation of two-dimensional fractal shapes in metal-on-metal growth have
been investigated theoretically. It is shown that an extended fractal growth regime, characterized by
significant local edge diffusion, exists on triangular but not on square lattices. Simulations to fit
observed data allow estimates of the activation barrier for edge diffusion.

PACS numbers: 68.35.Bs, 68.55.Jk, 68.70.+w, 82.20.Mj

Recent scanning tunneling microscopy (STM) studies
of metal-on-metal growth at submonolayer coverages
have uncovered a striking phenomenon. Within compar-
able ranges of growth conditions, fractal-like islands have
frequently been observed on substrates of triangular or
hexagonal geometry [1—3], but to date only compact
islands have been observed on substrates with square
geometry [4—6]. The only exception is the heteroepitaxial
growth of Ag on Ni(100) [7], for which dendritic step
decoration has been observed on a square lattice, but
where the adatoms themselves again assume a triangular
geometry.

The underlying physical reason for the dependence of
the submonolayer growth laws on the substrate or growth
geometry has so far not been explored. The observed
fractal structures have traditionally been attributed to
diffusion limited aggregation (DLA) [8]. Theoretical
studies addressing STM observations of fractal growth
have neglected the difference in substrate geometry, using
instead square lattices in growth simulations [9—13].
But in the standard hit-and-stick DLA model, fractal
growth should take place on both square and triangular
lattices [8,14]. In addition, a morphological difference
between the observed [1,2] and the standard DLA fractal
structures is apparent to the naked eye. In the STM
images, the average arm thickness of the fractal islands
is about four or more atoms [1,2], while in the DLA
model this thickness is only one atom. Widening of
the arm thickness can be expected if the atom-island
sticking coefficient is less than 1 [14—16]. But a reduced
atom-island sticking coefficient cannot be the cause at
the conditions at which fractal structures are observed
because lateral evaporation of atoms from islands is
negligible.

In this Letter, we study theoretically meta1-on-meta1
growth at submonolayer coverages on both a triangular
and a square lattice, using realistic growth models and
physical parameters. We pay special attention to the
specific atomic-bonding geometries in the two cases. We
show that under otherwise identical growth conditions,
the difference between the local atomic-bonding configu-
rations gives rise to the fundamentally different growth
laws on the two lattices. In particular, the temperature

range for fractal growth is predicted to be much wider on
a triangular lattice than on a square lattice. Furthermore,
our results suggest that the formation of essentially all the
observed fractal structures in recent experimental studies

[1,2] has involved significant local relaxation via edge
diffusion. These fractals are distinctly different from
those formed within the standard DLA model.

We begin with a qualitative analysis, followed by a
semiquantitative dimensional analysis, and finally by a
presentation of results of kinetic Monte Carlo simulations.
Qualitatively, at very low temperatures the DLA model
is valid for all lattices [8,14,15]. The temperature range
defining this regime will be discussed below. As the
substrate temperature is increased with all other growth
parameters kept constant, an atom previously inhibited
from moving by only one in-plane nearest neighbor (nn)
will become mobile along the edge of the island. For
a square lattice, the atom remains edge mobile until it
finds a more stable kink site, where it has multiple nearest
neighbors [Fig. 1(a)]. The resulting growth morphology
is compact. In contrast, for a triangular lattice, this edge
diffusion can only be local, because the atom will easily
find a site with two nearest neighbors [Fig. 1(b)], and
further diffusion away from a twofold coordinated site
would require higher thermal energy. The switching of
the inhibition mechanism from 1—nn binding to 2—nn

binding preserves the fractal growth mode, because there
are still a large number of degenerate sites at which
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FIG. 1. (a) Stable sites on a square; (b) triangular lattice once
a onefold coordinated atom (open circle) bound to the island
edge becomes mobile. The stable sites are marked by the small
circles. Possible activation barriers for diffusion by the edge
atoms are sho~n.
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growth can proceed. Fractal growth will be replaced
by compact growth only at temperatures at which even
inhibition by 2—nn binding becomes ineffective.

The above qualitative analysis offers a possible ex-
planation why fractal growth is observed only on tri-
angular lattices: For square lattices, the transition from
the standard DLA regime (hereafter called regime I) to
the compact growth regime (regime III) is direct. But
for triangular lattices, an extended fractal growth regime
(regime II) is sandwiched in between (see Fig. 2).

Using dimensional analysis, we can further assess
the temperature dependence of the crossover processes
from one growth regime to another. For submonolayer
coverage, the growth morphology is mainly determined by
the interplay between the deposition rate, k„,the hopping
rate for single-atom diffusion, k„and the rate for edge
diffusion, k, . All other rate processes are either too slow
(such as the evaporation of an adatom from an island)
or unimportant (such as the rate controlling interlayer
particle transport). The neglect of adatom evaporation is
equivalent to saying that the critical island size is 1 [17].
The island density is determined by the first two rates: a
high density of small islands for k, /k„small, and a low
density of large islands for k, /k„ large. The compactness
of the islands is determined by all the three rates. When
k, /k„ is very small, it is not meaningful to talk about
the fractal dimensionality of the islands, because they
are too small. When this ratio is large enough such that
the islands are large and well separated from each other,
then the value of k, determines whether they possess
fractal structures. A necessary condition to allow fractal
structures in regime I is k, (l) /k, & 1, where k, (1) is the
edge diffusion rate from a onefold coordinated site. Here
we introduce p to be the number of hops an atom bound.
to the edge of an island will make along the edge before
being joined by a second atom arriving from the 2D vapor
created by the deposited atoms. Then p = k, r1, where t1

is the time separation between two consecutive arrivals at
the same edge site. This time is given by
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Here R is the deposition rate, 0 the coverage, D = a k,
the single-atom diffusion coefficient, a the hopping dis-
tance, and d the (fractal) dimensionality of the islands.
In deriving Eq. (1), we have assumed two-dimensional
isotropic diffusion, and have invoked the relation that the
number of edge sites along a fractal island of size N is
given by N, = 27r(N/m)'~". The rest of the derivation
follows standard incorporation and nucleation theory at
low coverages [18]. Expressing k; = v; exp{—P V;], with

v; = v, or v, the attempt frequency for edge or terrace
diffusion, V; = V, or V, the corresponding activation bar-
rier, and P = 1/kT, we have
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Equation (2) shows how the value of p, which con-
trols the compactness of the islands, depends on exter-
nal (R, T, and 8) and internal (v„v„V„andV, ) phys-
ical parameters. In subsequent discussions we assume
ve vs

If V, (l) ~ V„where V, (1) is the barrier for diffusion
along the edge of an island by an atom bound to the island

by only one nn bond, the DLA regime is unreachable.
For systems that do satisfy V, (1) & V, (i.e., edge

diffusion is slower than terrace diffusion), we can draw
a "phase-" diagram using Eq. (2) (see Fig. 2). At very low
temperatures, p (( 1 and we have fractal growth by DLA,
with a fractal dimension d = 1.66. This behavior occurs
for all types of lattices [8,14,15]. As T is raised, the
probability p that an atom bound to the edge makes a hop
increases exponentially, quickly reaching the crossover
region p —1. For a square lattice, the activation barrier
against edge diffusion consists of the breaking and the
rejoining of one nn bond. The shape of the islands
quickly changes from being fractal to being compact as
the value of p increases from p && 1 to p&&1. The
corresponding dimensionality of the islands changes from
1.66 to 2 [12,13]. The transition temperature, located near
the center of the crossover region, is given by
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FIG. 2. "Phase'* diagram showing three possible growth
regimes: (I) standard DLA; (II) extended fractal; (IH) compact.
Regime H exists only for triangular lattices, as marked by the
thicker segment of the lo~er curve. d is the fractal dimension.

For triangular lattices, when inhibition by 1-nn bindIng
fails to prevent an atom from hopping along the edge,
inhibition by 2-nn binding occurs, as the atom increases
its coordination number by one after making a limited
number of hops. This amounts to replacing V,(1) in
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Eq. (2) by V, (2) [see Fig. 1(b)). Fractal growth takes
place as long as V, (2) is effective in preventing an edge
atom from leaving a twofold coordinated site in the time
it takes for another atom to arrive. The temperature
range defining this regime II in fractal growth is given by
khT = [V,(2) —V, (l)] ln '(A), where A is the argument
of the logarithm in Eq. (3). Figure 2 contrasts schemati-
cally the behavior for the two lattices, assuming identical
growth conditions and effective bond strengths. The
crossover from fractal to compact at either T, (1) or T, (2)
is exponentially fast.

For the triangular lattice, we have chosen the same
fractal dimension in regimes I and II, implying that the
two regimes belong to the same universality class. This
conclusion is reached from computer simulations using the
following minimal model. First, we repeat the simulation
for the DLA model [8]. A typical island in this regime I is
shown in Fig. 3(a). Next we simulate the case where the
temperature is halfway between T,(1) and T,(2), such that
every atom reaching the island will make hops until it is at
least twofold coordinated. A typical island in this case is
shown in Fig. 3(b), which looks distinctly different from
Fig. 3(a), but a standard analysis yields the same fractal
dimension d = 1.66. What differentiates them is the shape
factor, S, defined by N = Sr", where N is the number of
atoms contained within an island of radius of gyration r.
In regime I, S = 4.2, while in regime II, S = 7.6. We can
also introduce a physically more transparent measure for
differentiating the two regimes, the coordination number
distribution plotted in Fig. 4. In regime I, this distribution
is peaked at 2, as expected; the corresponding average
thickness of the arms of the island is about l. In regime 11,
the peaked value is shifted up to 5, with an average
arm thickness approximately equal to 4. We stress that
these results hold as long as the difference between V, (l)
and V, (2) is sizable, making the center of regime II well
defined; they do not depend on the precise value of either
V, (1) or V, (2).

We now return to the question why fractal 2D growth
structures have been observed experimentally only on
triangular lattices. First, why are they not observed on

square lattices? On square lattices it is only possible
to grow fractals in regime I. The absence of fractals
on square lattices could be due simp)y to the trivial
fact that V, (1) ( V, for all the square-lattice systems
that have been investigated; this is equivalent to saying
that T, (1) —0. Simple bond counting and calculation
using density functional theory suggest V, (1) ) V, [19].
Standard solid-on-solid growth simulations on square
lattices typically also assume this inequality [12,13,20].
But as long as V, (1) is not considerably higher than

V„growth at very low temperatures with extremely low
deposition rate is required in order to observe the possible
formation of islands with fractal shapes. The chance of
observing fractal growth on square lattices is expected to
be higher on substrates where enhanced terrace diffusion

by concerted atomic motion can take place [21].
For triangular lattices, it is possible to reach both

fractal growth regimes I and II if V, (1) ) V, . Even if
V, (1) ( V„but as long as V, (2) ) V„regime II, defined
now between 0 K and T, (2), is still achievable. In fact,
based on the arm thickness of the fractal islands shown in
the STM images [1,2], we conclude that all these fractals
have been formed in regime II.

We can make some useful upper-bound estimates on
V, (1) for several systems. For Fe/Fe(100), compact island
growth was observed at 20'C, the lowest temperature
explored [4]. Using Eq. (3) with d = 2, and experi-
mental values 8 = 0.07 ML (monolayer), R = 1.4 X 10's
atomscm 2s ', V, = 0.45 eV, Do = a2v, = 7.2 X 10
cm s ', and also assuming v, = v„we get an upper
bound estimate of V, (1) to be 0.65 eV.

For Pt/Pt(111), fractal growth was observed at 200 K
[2]. First, in order to estimate V, we have done growth
simulations on a triangular lattice at experimentally de-
fined conditions [see Fig. 5(a)], and compared the island
density with the ST1VI experiments [2]. The resulting V, is
0.25 eV, which agrees well with the value from field ion
microscope (FIM) measurements [22] and lies between
theoretical predictions [22,23]. No experimental or reli-
able theoretical information is available about V, (1). Be-
cause the fractal structures observed by STM resemble
the simulated fractal structures in regime II, T, (1) must be
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FIG. 3. Typical fractal islands formed on a triangular lattice,
in (a), regime I, and (b), regime II.
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FIG. 4. Coordination number distribution for the fractal
islands shown in Figs. 3(a) (open bars) and 3(b) (shaded bars).
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(a)

FIG. 5. Islands grown on a (a) triangular and a (b) square
lattice, at identical conditions. The lattice size is 200x200
in each case, and periodic boundary conditions have been
imposed.

lower than 200 K at the growth conditions of the experi-
ments. Using again Eq. (3) and setting T, (1) = 200 K, we
can give an upper bound e-stimate of V, (1) for Pt/Pt(l 1 1)
of 0.4 eV. An early FIM measurement [24] of V, giving
0.5 eV at high temperature is presumably V, (2).

Finally we compare growth simulation results on
different lattices using identical growth parameters: T =
200 K, 0 = 0.2 ML, R = 0.01 ML/s, V, = 0.25 eV,
V, (l) = 0.35 eV, V,'(1) = 0.45 eV, V, (2) = 0.5 eV,
and vo = p, = 8 X 10' s '. These parameters were
chosen from the conditions at which fractal islands have
been observed for Pt/Pt(l I 1) [2]. The islands formed on
a triangular lattice are shown in Fig. 5(a). They resemble
the STM images closely [2]. The islands formed on a
square lattice [Fig. 5(b)] are much more compact. Not
shown here are results from separate simulations on a
square lattice, using parameters as specified above for Fe/
Fe(100) [4]. The resulting islands are small and compact,
as observed in the experiments [4].

In conclusion, we have shown that it is critically impor-
tant to take specific atomic-bonding geometry into proper
consideration in modeling fractal growth on metal surfaces.
An extended fractal growth regime may exist on triangular
lattices, but is absent on square lattices. We have defined
the transition temperatures bracketing this regime, using
both external and internal physical parameters. We have
also characterized the morphological differences between
the fractal islands formed in this regime, and those formed
using the standard DLA model. Our results suggest that
essentially all the fractal structures observed in recent STM
growth studies are formed in this extended regime.
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