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The use of chaos to transmit information is demonstrated experimentally. The symbolic dynamics
of a chaotic electrical oscillator is controlled to carry a prescribed message by use of extremely small

perturbing current pulses.

PACS numbers: 05.45.+b

It has been argued on theoretical grounds that it is pos-
sible to use the close connection between chaos and infor-
mation theory for communication [1]. The realization that
chaos can be controlled by small perturbations [2] leads to
the idea that chaotic systems can be caused to produce a
signal bearing desired information. In this Letter, we re-
port the first experimental verification that communicating
with chaos is indeed feasible, and that one can utilize the
naturally occurring chaotic orbits on the attractor to carry
information. We demonstrate experimentally that we can
make the symbolic dynamics of a chaotic electrical oscil-
lator follow a prescribed symbol sequence; thus we can
encode and transmit any desired message [3].

To understand the ideas behind our experiment, con-
sider a simple electrical oscillator working in a nonlinear
regime and producing a large-amplitude chaotic signal
consisting of a seemingly random sequence of peaks.
Now imagine that one can use small perturbing current
pulses to cause the peaks to fall above or below a preas-
signed threshold value in a desired order. The peaks that
fall above the threshold are assigned the binary symbol 1,
and those that fall below are assigned a 0. By control-
ling this symbol sequence, we can encode a desired mes-
sage in the signal. The message can thus be transmitted
through a signal transmission path, and a receiver can ex-
tract the message by observing the sequence of peaks rela-
tive to the threshold amplitude. From the practical point
of view, we envision that the power oscillator that gen-
erates the information-bearing signal can be simple and
efficient, while the small controlling current pulses can be
produced by a low-power microelectronic circuit.

Figure 1(a) is a schematic diagram of the electrical
circuit used in our experiment [4]. The nonlinearity
comes from a nonlinear negative resistance represented by
the voltage vg. The negative resistance i-v characteristic
g is shown in Fig. 1(b). The frequency of oscillation is
approximately 5 kHz. The capacitor C; is variable so that
we can tune the circuit for various types of behavior. For
this experiment, we tuned the circuit to produce a Rossler
band. An uncontrolled experimental trajectory is shown
in Fig. 2.

The first step toward controlling symbol sequences is
to experimentally obtain a description of the symbolic dy-
namics of the uncontrolled oscillator. Because in prac-
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tice some symbol sequences are not produced by the free-
running oscillator, the rules specifying the allowed symbol
sequences (the grammar) need to be determined. Meth-
ods for determining the grammar of chaotic systems are
the topic of much current research in symbolic dynam-
ics [5]. We first discuss our method for determining the
symbolic dynamics and allowed symbol sequences. To
determine the symbolic dynamics and to control the sys-
tem, we use a computer-assisted measurement system that
rapidly samples the circuit voltages and can perform all
the computations necessary for control. The system can
also provide current pulses to control the system. We will
henceforth refer to this system as the controller [6].

To characterize the dynamics, we take samples of v¢,
on the Poincaré surface vc, = 0 as v, passes through
zero volts in a negative direction. The intersection of the
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FIG. 1. Double scroll oscillator: (a) Electrical circuit with
L =282 mH, C; =0.0055uF, C,=005uF, and 1/G =
1.33 k). Controlled current pulses are injected by the source
i,. (b) Negative resistance i-v characteristic.
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FIG. 2. Measured trajectory on Rossler-type attractor showing
Poincaré surface, symbolic partition, and locus of control
pulses. Units are volts.

attractor with the surface v, = 0 is well approximated by
a single thin arc, and thus we can describe the dynamics
of v¢, on the surface of section by one coordinate. Each
time the voltage v¢, (see Fig. 2) passes through zero in
the negative direction, the controller is triggered (using
the trigger circuit in an oscilloscope) to sample the value
of vc,. We call the value of vc, on the Poincaré surface
the state point x = v¢, IUC2=0. The natural way to partition
the Poincaré surface into symbolic regions is to choose the
partition boundary at the point on the surface of section
which leads into the fold in the Rdossler band under the
action of the dynamics. (If the boundary is not taken at
the fold, then two different state points can generate the
same symbol sequence.) The symbol O is thus generated
when the state point is to the left of the boundary shown in
Fig. 2, and a 1 is generated when the state point is to the
right of the boundary. The symbolic partition is shown
on the Poincaré surface with respect to the state point
that passes into the fold in Fig. 2. Hence, the voltages
x = vg, |,,C2=0 that fall above the boundary correspond to
a 1 and the voltages that fall below the boundary to a 0,
and the dividing threshold is the partition boundary at the
point that leads into the fold in Fig. 2. [In practice, if the
transmitted signal is the scalar load voltage v¢ (¢), one can
detect the symbols by observing the peaks in this signal
alone relative to a threshold voltage.]

Whenever the system state coordinate crosses the
Poincaré surface, the state point x = v, I,,Clzo is stored in
the controller. The controller then records the sequence
of symbols generated after the crossing by determining
whether the next ten crossings (including the present
crossing) of the Poincaré surface are to the left or right
of the partition boundary in Fig. 2. The ten-bit symbol
sequence stored in the symbol register can be viewed as
a binary number from O (all 0’s) to 1023 (all 1’s). We
denote this number by r. We define an inverse coding
function [1] s(r) for r ranging from 0 to 1023, where
s(r) is the average value of the state point producing
the symbol sequence specified by r. In practice, s (r) is
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computed by following a long orbit and taking a running
average of all x that produced the symbol sequence r.
If the symbol sequence 1111111111 is produced by a
trajectory passing through the state point x = =15V,
for example, we set the variable s (1023) = —1.5, where
1023 is the binary value of 1111111111. When another
trajectory produces the same symbol sequence, perhaps
at a voltage x = —1.502 V, we update the value to
5 (1023) = —1.501, the average of the state points for the
two trajectories that produced this symbol sequence.

An experimental inverse coding function is shown in
Fig. 3. This finite approximation of the inverse coding
function represents a table with 2!° = 1024 entries stored
in controller memory of the state points s that correspond
to each possible ten-bit symbol sequence r. Some of the
210 = 1024 ten-bit sequences are never produced by the
free-running oscillator. This is typical of the symbolic
dynamics of chaotic systems in general and is known
as a constraint on the grammar, or, in the context of
communication, it is known as a channel constraint.
The type of constraint that occurs for our oscillator is a
generalized type of run-length constraint [7]. (A simple
run-length constraint places a maximum and minimum on
the allowed length of strings of 1’s and the allowed length
of strings of 0’s appearing in the code.)

To be able to control the system and hence produce a
signal carrying a desired message by use of small pertur-
bations, we must incorporate the effect of perturbations on
our description of the dynamics. We coupled a digital-to-
analog converter in our controller to the positive terminal
of capacitor C, shown in Fig. 1(a) in series with a large
buffer resistor, thus providing a simple method for inject-
ing small current pulses. The current pulse generator is
represented schematically as dashed lines in Fig. 1. These
pulses had an approximate duration of 4 us as compared
to the typical cycle time of the chaotic oscillator of about
200 ws.

In our experiment we applied controlling current pulses
80 us after each crossing of the surface of section. The
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distance around the attractor at which a pulse occurs
varies depending on the average velocity of the phase
space flow along a given orbit. The location on the
attractor at which pulses occur is indicated in Fig. 2
by the gray swath at the bottom of the attractor. The
key to our control procedure is the realization that the
application of a pulse affects a very small change in
the state point that produces a given symbol sequence.
Because the pulse amplitudes are very small, this change
Ax is approximately linear in the pulse amplitude p. That
is, p = dAx, where in general the proportionality constant
d depends on x, or, equivalently, on r. We calculate
d(r) as follows. After a state point x is sampled, the
pulse is applied using a small reference value p = p,, and
ten symbols (including the one corresponding to x) are
shifted into the symbol register in the same way as before.
Another reference pulse is not applied until this ten-bit
sequence has been accumulated. The procedure is then
repeated. In this way, we obtain the functional relationship
between x and r in the presence of the reference pulse
of amplitude p = p,. We denote this relationship by
w (r), where w is the value of x that produces symbol
sequence r in the presence of the reference perturbation.
The proportionality constant d (r) is then given by d (r) =
p./[w(r) — s(r)]. We can thus compute the required
pulse amplitude to affect a desired small change in the
value of the state point by p = d (r)[x — s(r)], where x
is the actual state point upon crossing the Poincaré surface
and r is the desired future symbol sequence, which will
be specified by the message bits. We thus compute the
‘required pulse amplitude using only one subtract and one
multiply, a highly efficient algorithm that could be used in
a microelectronic controller at much higher speeds than in
the experiment described here.

We now discuss the procedure used to cause the
oscillator to track a prescribed binary symbol stream.
We now have, in controller memory, the function s (r)
containing the state points that will produce each allowed
symbol sequence if no perturbation is applied and a
function d(r) that we use to compute the required
control pulse amplitude. We now switch the controller
from the learn phase to the control phase. When the
system coordinate passes through the Poincaré surface,
the controller samples v¢, and obtains the first state point
xo. The controller then loads the symbol register with the
symbol sequence that will naturally evolve if no control
perturbation is applied; that is, the value in the symbol
register is set to the value of r corresponding to the array
element s (r) = xo. The symbol register now contains ten
bits that are determined not by our message, but by the
state point that happens to occur the first time. While
the trajectory travels toward its next encounter with the
Poincaré surface, the controller shifts the symbol register
left and inserts the first message bit into the rightmost
(least significant bit) slot. The leftmost (most significant)
bit is discarded; this bit corresponds to the symbol that
was just produced and is no longer needed. The symbol

sequence now appearing in the symbol register is the one
that we want the oscillator to produce after the upcoming
encounter with the Poincaré surface. Corresponding to
this desired symbol sequence, r; is the desired state point
x; = s(ry) that will produce this sequence. It is unlikely,
however, that the state point x; will exactly correspond to
s(ry), so the controller must apply a perturbation to correct
the trajectory. When the trajectory passes through the
Poincaré surface again, the error in the state point Ax; =
x, — s(r1) is computed. The controller then applies the
first control perturbation p, = Ax;d(r;). The controller
then shifts the symbol register left and places the next
message bit into the rightmost slot, discarding the leftmost
bit corresponding to the symbol just produced. As each
successive state point x, becomes available, the controller
looks up the target state point s(r,), where r, is the
desired symbol sequence in the symbol register, computes
the error Ax, = x, — s(r,), applies a control pulse p, =
Ax,d(r,), and shifts one new message bit into the symbol
register. This procedure is repeated continuously as long
as the system is under control. Because we first load
the symbol register with the symbol sequence that will
naturally evolve without control, the first ten iterates of
the control procedure target the system from chaos into
the information transmission.

As previously mentioned, the constraint on the gram-
mar for our oscillator is a generalized run-length con-
straint, but we can satisfy the grammar with a simple run-
length constraint such that no runs of more than one 0
occur. The grammar can be satisfied with this simple
constraint because the dynamics of the Rdssler system
is well approximated by a one-dimensional single-hump
map [7]. We have encoded the message [8], “Yea, ver-
ily, I say unto you: A man must have chaos yet within
him to birth a dancing star. I say unto you: You have
yet chaos in you.” We used the standard seven-bit ASCII
computer standard for the characters in the message and
then mapped the message bits to code bits according to
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FIG. 4. State-point sequence with encoded message showing
the Cantor-set structure produced by the constrained code
during control with two different encoded messages.

1783



VOLUME 73, NUMBER 13

PHYSICAL REVIEW LETTERS

26 SEPTEMBER 1994

the rule 0 — 01, 1 — 11, and thus no more than one 0 will
ever occur in a row. (One could also use the variable-
length code 0 — 01, 1 — 1 to improve the rate of in-
formation transmission.) To demonstrate the effect of the
control symbol sequence on the signal, we have also pro-
duced another “message”—a random sequence of 0’s and
1I’s constrained to no more than one O in a row. A state
point sequence corresponding to the repeated [9] trans-
mission of the Nietzsche quotation followed (starting at
cycle n = 3.3 X 10*) by transmission of the random bit
stream is shown in Fig. 4. Because of the overly restric-
tive simple run-length constraint, the state points x, fall
within bands on the Poincaré surface during transmission
of both messages. (The rms control current during the
whole sequence was 0.2 uA; compare this to circuit cur-
rents of a few milliamps.) Both binary streams cause the
sequence of state points to approximately lie on a Can-
tor set [10]. This occurs because an overly constrained
symbol sequence also constrains the state-point sequence.
Because the binary sequence representing the quotation is
more restrictive than the random bit sequence (because the
code 0 — 01, 1 — 11 used to satisfy the run-length con-
straint is itself more restrictive than necessary), the signal
is confined to narrower bands during the quotation than
during the random bit sequence.

An important aspect of this type of signal is that more
than one information bit can be extracted from a single
state-point sample—the Cantor-set structure of the signal
consists of bands that represent sequences of symbols not
just single encoded binary symbols. One can visually
resolve bands corresponding to up to six-bit-long binary
sequences in our experimental signal; we have labeled
these sequences in Fig. 4. Only one new code bit becomes
available for each cycle of the system, but more than one
code bit can be extracted from one state point sample. A
signal such as this could thus be detected and decoded by
only sampling once every three cycles of the signal, for
example, which would give the observer three code bits
per sampled state point.

In conclusion, the experimental results reported support
the feasibility of communicating with chaos by controlling
the symbolic dynamics of a chaotic oscillator and demon-
strate some important features of this method of commu-
nication.
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Friedrich Nietzsche, Thus Spake Zarathustra. We have
this liberal yet appealing translation of the German “Ich
sage euch: man muB noch Chaos in sich haben, um
einen tanzenden Stern gebdren zu konnen. Ich sage
euch: ihr habt noch Chaos in euch.” from the frontispiece
of the book by Manfred Schroeder, Fractals, Chaos,
Power Laws—Minutes from an Infinite Paradise (W.H.
Freeman and Company, New York, 1991). The more
literal translation by Thomas Common (Random House
Modern Library, New York) is “I tell you: one must still
have chaos in one, to give birth to a dancing star. I tell
you: ye have still chaos in you.”

For the first 3.3 X 10* cycles, the oscillator repeats
the transmission of the Nietzsche quotation. There are
133 characters in the quotation, thus 7 X 133 ASCII
bits, and 7 X 133 X 2 = 1862 code bits. The encoded
quotation thus appears in the signal about 17 times during
the first half of the controlled state-point sequence.

This signal represents the first experimental stabilization
of a Cantor-set invariant density.
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