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Flux Creep in Superconducting Films: An Exact Solution
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An exact solution of the nonlinear integral equation is obtained that describes flux creep in strips
or disks. We calculate both analytically and numerically the relaxation of the electric field E(r,t),
sheet current J(r,t), flux density B(r,t), and magnetic moment M (t). After some transient period,
E(r,t) approaches a universal nonmonotonic shape, regardless of the detailed form of the current-
voltage law E(J). We predict that, in spite of the relaxation of M, B(r,t) will both increase and
decrease with ¢ in regions separated by “neutral lines,” along which B(r,t) does not depend on time.

PACS numbers: 74.60.Ec, 74.60.Jg

The critical state of superconducting films in perpen-
dicular magnetic field H exhibits a number of novel fea-
tures [1-8] as compared to the Bean model for slabs in
a parallel field [9]. Recently this problem has attracted
much interest since new static analytical solutions for the
current J(r) and magnetic field H(r) in perpendicular
field were obtained [5-8] which are qualitatively differ-
ent from the well known parallel case. At the same time,
high resolution scanning Hall probe [10-12] and magneto-
optic [5,13,14] measurements revealed nontrivial features
of H(r) and J(r) in thin high-T, superconductors which
are important for the correct interpretation of magneti-
zation curves and flux pinning in the perpendicular field
orientation usually used in experiments.

As for the flux dynamics in thin films in perpendicular
field, a detailed theoretical description has been given so
far only for the linear Ohmic regime [15], which occurs in
high fields H at temperatures T above the irreversibility
line. This analysis has shown that even the linear flux dy-
namics in thin films differs qualitatively from the parallel
case, since the equation for H turns out to be nonlocal
[15]. This effect is essential for the calculation of the lin-
ear ac response of thin films, for example, the complex
magnetic susceptibility or the attenuation and frequency
change of vibrating superconductors [16,17]. Below the
irreversibility line, the situation is complicated by the
strong nonlinearity of the E-j characteristics below the
critical current density j., where the electric field E(j)
caused by thermally activated drift of vortices can be
written in the form

E = Ecexp-U(4)/T]. (1)

Here U(j) is a flux-creep potential barrier which vanishes
at j = j, and E, is a crossover electric field which de-
fines j. by E(j.) = E.. Formula (1) together with the
Maxwell equations completely determines the dynamics
of the flux creep, which can be formulated in terms of
a nonlinear diffusion of the magnetic flux through the
sample [18]. For the perpendicular field orientation, this

nonlinear flux diffusion also becomes nonlocal and is de-
scribed by a nonlinear integral equation obtained in Ref.
[15]. In this Letter we obtain exact solutions of this non-
linear and nonlocal equation which describe flux creep in
a thin strip and a circular disk.

We first consider a superconducting strip placed in a
uniform time-dependent magnetic field H,(t) parallel to
the 2z axis, the strip being infinite along the z axis and
having a width 2a along the y axis and thickness d < a.
The electric field E(r) and current density j(r) have then
only  components E(y,t) and j(y,t). The z component
of H(y,t) at z = 0 is given by Ampere’s law, which to an
accuracy of d/a < 1 reads

1 /% J(u)du
H) = Ha(t) + 3= [ ZHE 2)
Here J(y) = [j(y,z)dz is the sheet current; we shall
assume here J = jd. To obtain a self-consistent equation
for E(y), we substitute Eq. (2) into the Maxwell equation
woOH /0t = —0F /9y, writing 8J/0t = (8J/OE)OE/ot.
This gives

10E _ 8H,

106E 1 [* 8J 0E(u,t) du
po 8y Bt

S —t

2rJ_,O0E 0t )
The integro-differential equation (3), which describes the
nonlinear flux diffusion in the strip in perpendicular field,
is nonlocal, unlike the local equation E” = u(8j/0E)E
for the parallel case (the prime and overdot denote space
and time derivatives, respectively). Notice that these
local or nonlocal diffusion equations can be written in
terms of different variables H(r,t), J(r,t), or E(r,t).
We use here the latter representation since it turns out
that the time evolution of E(r,t) is universal for differ-
ent models of thermally activated flux creep [19], while
the more model-dependent J(r,t) and H(r,t) are ob-
tained by inserting the universal E(r,t) into the spe-
cific E-j characteristics. As an illustration, we consider
a vortex glass and/or collective creep model for which
U(j) = [(je/3)? — 1)Uy, where Uy is a characteristic acti-
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vation energy and 8 > 0 [20,21]. In this case the differ-
ential conductivity 8j/0F in Eq. (3) is given by

In —
Uo ' E

0E  U,BE

. . -1-1/8
8 _ Tij. [1+T E] _ @)

Since the ratio T'/Up is much smaller than unity well
below the irreversibility line, we have 8j/0FE = ji/E
over a wide region of E, except for exponentially small
fields £ < Ey = E.exp[-UpfB/(1 + B)T] <« E. (here
j1 = TJ./BU, is the apparent flux creep rate dj/dInt).
But even at Up8/(1 + B)T = 1, the logarithmic terms
in Eq. (4) give rise to only slowly varying corrections to
the universal dependence dj/dE ~ 1/E, which virtually
results from the thermally activated character of the flux
dynamics at j < j. and takes place for any power depen-
dence of U(j) in Eq. (1) [19].

For this reason, we consider the case 85/0E = 5, /E in
more detail, writing Eq. (3) in the form

*E(u,t) udu

Kod j1 ( )
o E(u,t) y2 —u?’

E'(y,t) = ~poHa(t) -

Here we have used the odd symmetry of the magnetiza-
tion currents J(y) = —J(—y) in the absence of a trans-
port current. From Eq. (5) it is immediately seen that a
linearly increasing magnetic field H,(t) = H,t induces a
steady-state electric field E = —pugH,y across the strip.
When the increase of H,(t) is stopped, the field E(y,t)
begins to decay with ¢ due to the nonzero resistivity of a
superconductor at j < j. caused by thermal activation.

Remarkably, the relaxation of E(y,t) at H, =0 can
be obtained ezactly from Eq. (5) by the ansatz E(y,t) ~
f(y)g(t), with the functions f(y) and g(¢t) depending only
on y and ¢, respectively. With this ansatz, f(u) cancels in
the integrand in Eq. (5), and f(y) is obtained by a simple
integration of (5), provided g(t) obeys the equation g =
—g2. Therefore, g(t) = 1/(t + 7) with 7 an integration
constant, and the exact solution of (5) is

_ _pojiad . (y
= mfsmp (a) , (6)

fstrip(n) = (14n) In(1+n) —(1—n) In(1—n)—29ln|n| . (7)

In terms of the integral kernel K(y,u) =In|(y —u)/(y +
u)| of Ref. [15], one has fsrip(n) = —folK(n, u) du. Our
method is easily generalized to varying thickness d(y).
For a circular disk with radius a, one obtains the same
exact solution (6) if fsrip(y/a) is replaced by a similar
universal function fqisk(r/a) obtained by integrating the

disk kernel Q(r,u) [15], faisk(n) = —folQ(n, u) du, or

Faisk(n) = / /"/“[IE(_ki K(k)

14w
where E(k) and K (k) are complete elliptical integrals
and k? = 4v/(1 + v)2. The function (8) is fitted with

E(y,t)

] dv, (8)

high precision (absolute deviation < 2.9 x 10~4) by

faisk(n) = c1n + can® + canlnn + c4(1—n) In(1—n), (9)

with ¢; = 0.45880, c; = 0.37313, ¢c3 = —1.55714, and
¢y = —0.97479 (Fig. 1).

Formulas (6) and (7) are exact for the linearized flux-
creep barrier U(5)/T = (j — jc)/71 for which 85 /0F =
71/E and J(y,t) = J. — Jiln[E./E(y,t)]. These re-
sults, however, are more general and hold for a wide
class of nonlinear U(j) as well. Figure 1 shows the
results of numerical time integration of Eq. (3) (de-
scribed in detail in Ref. [15]) for power laws E(j) ~ j™
with various n. As seen from Fig. 1, the relaxation
leads to distributions E(y,t) which are indeed very close
to the universal profiles (6) and (7) at n > 1 with
E ~ 1/(t + 7)™™=1 [19]. Even the comparatively
“weak” nonlinearity E ~ j3 yields this universal crit-
ical state. Only for the Ohmic case E = pj, or the
Kim-Anderson model [22] E ~ sinh(j/j1) which becomes
linear at j < ji, the profiles of E and J attain a differ-
ent, also universal form (Fig. 1) and decay exponentially,
E(y,t) = pj(y,t) ~ fo(y/a)exp(—t/m). Here fo(y/a)
and 7y are the lowest eigenfunction and eigenvalue of the
linearized Eq. (3).

We consider the effect of nonlinearity of U(j) on the

E(n)/E(1)

FIG. 1. Top: Universal profiles which the electric field
E(r,t) approaches during flux creep at ¢ > 7. Shown is
E(n,t)/E(1,t) for strips of half width a and for disks of
radius a versus 7 = y/a = r/a obtained numerically for
the model E(j) = Ec(j/jc)™ for n = 1,3, and oco. The
curve n = oo (bold line) is reached at n > 9 and co-
incides with fatrip(n)/fetrip(1) (7) or faisk(n)/ faisx(1) (9)-
Bottom: Relaxation of E(y,t) for a strip with n = 25
at times t = 0,0.003,0.01,0.03,0.1,0.3,1, and 3 in units
adjcpo/2rE. =~ nto (16) (j1 = je/n). The inset shows the
relaxing magnetization M (t) for this case, which approaches
M(t) — M(0) ~ 1/t¥/?*— 1 ~ —Int.
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universal behavior of E(y,t) for the power law U(j) with
0j/OE given by Eq. (4). As follows from (3)—(5), this
gives rise to an additional factor

F(u,t) = {1+ (T/Uo) In[E./E(u,t)|}~*~*/#

in the integrand of Eq. (5). Furthermore we note that
at T < Ujp the contribution from the coordinate part
f(y) of E(u,t) in the slowly changing logarithmic term
in F(u,t) may be replaced by its mean value, after which
F becomes independent of u and may be accounted for
by using an effective time { instead of ¢ in (6),

t= / [1+ (T/U) (e f20) #7548, ¢ 10, (10)
0

where to = cupjiad/E., and ¢ = 1 is a constant which
results from the averaging of In f(y) in F(u,t). As seen
from Eq. (10), the difference between ¢ and ¢ mani-
fests itself only at exponentially large times ¢ > t. =
to exp[UoB/(1 + B)T).

Substituting Eqgs. (6), (7), and (10) into the Maxwell
equation ugH = —E’ and integrating over ¢, we obtain
H(y,t) at t > to,

Je In(a?/y% - 1) 1
2n[1+ (T/U0) m(Z/e) |78 )

For (T/BUp) In(t/ty) <« 1, formula (11) reduces to the
result we derived for the exponential E(j). As in the lin-
ear case [15], the singularity in H(y) at the strip edges
|yl = a is suppressed by the finite film thickness, and the
logarithm in (11) attains a maximum = In(a/2d). The
singularity at y = 0 is also fictitious since the averaging
of In f(u) in F(u) becomes invalid at y = 0 because F(u)
vanishes at the same value u = 0 at which the kernel
of Eq. (3) is singular. If we account for the vanishing
of E(u) in F(u) at u = 0, the weak logarithmic diver-
gence of H(y — 0) disappears. The relaxation of H(y,t)
described by Eq. (11) can be seen in Fig. 2.

We now consider the relaxation of the magnetic mo-
ment of the strip, M(t) = 2 f: yJ(y,t)dy (per unit
length; the factor 2 accounts for the U turn of the mag-
netization current at the ends of the strip [7]), or of the
disk, M(t) = = [ r2J(r,t) dr. Notice that although Eq.
(6) is an exact solution of (5), it does not satisfy the ini-
tial condition E(y,0) = —poH,y. The transient period
during which E(y,t) depends on the previous history of
H,(t < 0) is described by the time constant 7 in (6) [19].
We shall use Eq. (6) for a self-consistent calculation of
M(t) by choosing a 7 value which ensures the correct
value of M at t = 0 [19]. From (6) we get for the strip

H(y,t) = Ho(0) -

_ 2 koJjrad
M(t)=a [Jc +Jiln onrE, + aJl]

—MiIn(1 +t/7), 12)

with My = a2J; and o = 2folr)lnfsmp(n) dn = 0.450.
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FIG. 2. Current density J(y,t)/J. and magnetic field
H(y,t) — H, in a strip for the vortex glass and/or collective
creep model (1), (4) with T/Up = 1/19 and 8 = 1 at times
¢t = 0.01,1,100,10%,10°, and 10®. Units are J. = jcd for field
and sheet current J, and adpojc/27E. =~ 12t (16) for time.
Flux creep starts at t = 0 with E(y,t) = Ecy/a = —poHa.
The inset shows the relaxing magnetization for this model,
which for ¢t > 1 is fitted extremely well by (17) (dashed line).

For the disk, one should replace in (12) the prefac-
tor a? by ma®/3 and one has M; = (ma®/3)J; and
a = 3]01172 In faisk(n)dn = 0.110. The value M(0) is
calculated by taking E(y,0) = —uoH,y, whence [19]

M(0) = a2 [Jc + JyIn Poffa® _ ﬁ] . (13)

E, 2
Equating the expressions in the square brackets in (12)
and (13) we finally get
¢ )
M(t) = M(0) — Mlln(l + -—), T =041 J_1__01 (14)
T H,
Formulas (13) and (14) are similar to those for a slab in
parallel field [19]: In both cases 7 is proportional to the
minimum sample size and inversely proportional to the
ramp rate H,. In the regime of the steady-state relax-
ation t > 7 the value 7 cancels in (12); thereby M(t)
becomes independent of the initial conditions,

M(t) = M. — M;In(t/to), (15)
M. = ach’ to = ad“0j1/4Ec ) (16)
where both J, and ty depend on the voltage criterion E..

The decay of M(t) in the vortex glass/collective creep
model is described by the interpolation formula [21]

M(t) = Mc/[1+ (T/Uo)In(t/t0)]V/P, t > to.  (17)
This time dependence, which coincides with that of
H — H, (11) and of J, describes the numerical results
for strips (Fig. 2) and disks very accurately (deviation
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< 0.5%) for 5 < t/to < 10%0. The fit of M(t) is improved
(deviation < 0.2%) if in (17) to (16) is replaced by 1.2t
for the strip and by 0.8t for the disk. Interestingly, the
more correct replacement in (17) of ¢ by £ (10) does not
improve this fit noticeably.

Despite an apparent similarity of Eqgs. (13)-(17) for
the parallel and perpendicular cases, these correspond
to qualitatively different regimes of local and nonlocal
flux diffusion, respectively. For instance, the nonlocality
manifests itself in the fact that the value ¢y in perpen-
dicular field turns out to be proportional to the cross-
sectional area ad of strips or disks, whereas in paral-
lel field one has to ~ a? [19] for slabs of thickness 2a.
The same geometric dependencies are valid for the lin-
ear relaxation times 7 of Ohmic conductors [15]. More
striking differences become visible when comparing the
electric field profiles (6) with the parabolic distribution
E(y,t) = poji[2ay — y?sgn(y)]/2(t + 7) for the paral-
lel case [19]. For instance, the electric field E(y,t) has
logarithmically diverging slope E’(y,t) at the edges of
the strip, the profile being nonmonotonic with the max-
imum at y = y,, = a/ V2 (Fig. 1). This maximum gives
rise to anomalous flux-creep dynamics determined by Eq.
(11) (Fig. 2). Namely, in the central region y < ypn,, the
local field H(y,t) increases with ¢t due to the flux pen-
etration into the strip. However, in the lateral regions
ym < |y| < a, the field decreases with ¢, in stark con-
trast to the parallel case. This decrease is due to the
field enhancement caused at the edges by the large de-
magnetization factor. During the relaxation, flux creep
smooths out the field profile H(y,t) such that H > 0
in regions where H(y,t) < H,, and H < 0 in regions
where H(y,t) > H,. As a result, there appear “neu-
tral lines” y = +a/+/2 in the strip, and a neutral cir-
cle r = 0.652a in the disk, along which H(r,t) remains
constant despite the flux creep. This effect should be
observable by magneto-optic or Hall probe experiments.

In summary, we considered flux creep in thin super-
conductors in perpendicular field. An exact solution of
the nonlinear integral equation is obtained, which de-
scribes nonlocal diffusion in superconducting strips and
disks. The presented method accounts for both the sam-
ple geometry and the strong nonlinearity of E(j) in the
flux-creep regime. For a wide class of nonlinear resistivi-
ties, the electric field profiles after some transient period
take the universal nonmonotonic shapes (6)-(9) and de-

crease approximately as 1/t. Anomalous flux dynamics
in flat superconductors is predicted, with the coexistence
of regions of decreasing and increasing flux density.
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