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Lagrange Equilibrium Points in Celestial Mechanics and Nonspreading Wave Packets
for Strongly Driven Rydberg Electrons
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We exhibit analytically and confirm numerically the existence of stable, though nonstationary,
quantum states of electrons moving on circular orbits that are trapped in an effective potential well
made of the Coulomb potential and the rotating electric field produced by a strong circularly polarized
electromagnetic wave. These states are direct counterparts of the Trojans —two clusters of asteroids
moving around the Sun in the vicinity of the stable Lagrange points in the Sun-Jupiter two-body system.

PACS numbers: 32.80.Rm, 42.50.Hz, 92.10.Ce

The aim of this Letter is to show that a strong circularly
polarized electromagnetic wave with finely tuned param-
eters will create stable equilibrium points in atoms that
are analogous to the gravitational equilibrium points well
known in celestial mechanics (cf., for example, [1—4]).
Wave packets that describe Rydberg electrons when
placed at these points will orbit the nucleus without
spreading. Such nonspreading wave packets are direct
quantum analogs of the clusters of Trojan asteroids or-
biting the Sun near the stable Lagrange points L4 and L5
of the Sun-Jupiter system.

Lagrange points Ll, . . . , L5 are the points of equilibrium
in the restricted three-body problem of celestial mechanics
at which the centrifugal forces are exactly balanced by
the gravitational attraction of the two orbiting bodies.
These points have fixed positions in the coordinate frame
corotating with the two bodies around their center of
mass. The three collinear points lying on the line
connecting the centers of the two bodies are unstable.
The two equilateral points, lying on the vertices of two
equilateral triangles based on the line segment connecting
the centers of the bodies, are stable if the mass ratio p, =
m2/(m~ + m2) satisfies the condition p, (1 —p, ) ( 1/27.
The stability of motion near the equilateral Lagrange
points is due to an intricate interplay between the potential
forces and the Coriolis force. Essentially the same
mechanism is responsible for the stability of motion
in the Paul trap. A simple mechanical model with a
rotating saddle-shaped potential shown by Paul in his
Nobel lecture [5] embodies the essential features of the
stabilization mechanism.

The equations describing in the corotating frame the
dynamics of a test body oscillating near a stable Lagrange
point in the x-y plane defined by the orbiting bodies can
be cast into the following general form:

dx/dt = p„+toy, dp, /dt = —ato x + topY, (la)

dy/dt =
pY

—tax, dpY/dt = bto y —to—p„, (lb)

where co is the angular frequency of rotation and a
and b are two dimensionless parameters whose values
depend on the problem. We have omitted the equations
describing the motion in the z direction since this motion
decouples from the motion in the x-y plane and is always
oscillatory. The two eigenfrequencies au+ and ~ of
oscillations in the x-y plane can be found analytically
and the oscillations will be stable if both are real. The
stability regions in the a-b plane are shown in Fig. 1.
Equations (1) are the canonical equations of motion for
the Hamiltonian H„,of a harmonic oscillator in a rotating
frame,
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FIG. 1. The islands of stability (shaded areas) in the plane of
parameters a and b. In the parabolic triangle the potential has
a saddle point but the motion is stable due to an interplay of
potential forces and the Coriolis force. Points lying on the three
lines intersecting the triangular stability regions correspond
to the gravitational three-body problem and to an atom in a
circularly polarized wave.
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This expression can be obtained from the full Hamiltonian
describing the motion of a test body of mass m in the
frame of reference rotating with the angular frequency cu,

p Gmm)
Hg, =

2m fr —r) /

Gmm2 —cu(xp, ,
—yp, ),

(3)

p
2 Z

H, (
= ————X v —co (xp, . —y p ), (4)

by expanding the potential around the point of static
equilibrium in the corotating frame and keeping only
the quadratic terms (the linear terms all cancel out due
to the equilibrium condition). This procedure leads for
the restricted three-body problem to expressions for the
coefficients a and b that are constrained to lie on the line
a + b = —1 and they belong to the stability island in

Fig. 1 if the second mass is either very small compared
to the first mass, p, & 1/2 —$23/108 = 0.03852, or

nearly equal, p, ) 1/2 + $23/108 = 0.96148. The mass
of Jupiter, slightly less than one-thousandths of the solar
mass, meets the first criterion and the two clusters
of Trojan asteroids provide a vivid example of the
stable equilibrium points in celestial mechanics at work.
These asteroids undergo stable oscillations in the rotating
frame with the frequencies co+ = 2m. /147.4 yr and cu

2m /11.9 yr.
After this brief discussion of stable Lagrange points we

can ask about the implications of such an analysis for
atomic systems. Are there stable points of equilibrium
for atomic electrons that may trap the wave function and

produce stable but nonstationary states? All we have to
do to find such states is to show that Eqs. (1) apply in

some situations to atomic systems. The direct analog
of the Sun-Jupiter system would be a diatomic molecule
with two atoms having the appropriate masses, but the
electron clouds screen the forces making the dynamics
significantly different from the purely Coulombic case.
We found, however, a close analog of a stable Lagrange
point in the simple case of a hydrogenlike ion placed in

the electric field of a circularly polarized wave. When
directed towards the nucleus, the electric field plays the

role of the gravitational pull of the lighter body and will

lead under the proper choice of parameters to the creation
of a stable equilibrium point.

The Hamiltonian for the electron moving in the com-
bined Coulomb and electromagnetic wave field in the ro-

tating frame has the form (in atomic units)

Note that when X = 0, Eq. (5) is the formula defining
the radius of a circular Coulomb orbit and when Z = 0
it is the formula for the maximal excursion of a charge
in a sinusoidal field, which has been called the Kramers-

Hennenberger parameter in recent discussions of atomic
stabilization by laser pulses [6]. Upon expanding the

Hamiltonian H, ~ around the equilibrium point, we get the
Hamiltonian H„,for the motion in the .v-y plane with

the following identification of the coefficients a and b:

a(q) = q, b(q) = —2q, q = Z/ /4)y(). (6)

h;,, = m+a+a+ —cu a at (7)

Note that the second term enters with a minus sign. Thus,
the Hamiltonian is not bounded from below, but it still has
a complete set of square integrable states. These states are
stable within the present approximation. Transition. s be-
tween these states are caused by the nonlinear corrections
to the Hamiltonian (2) and by the spontaneous emission
of photons. The transition rates for these processes will

be small if we can make the wave packet small. The
Gaussian wave packet describing the fundamental state
annihilated by both annihilation operators a+ and a
the analog of the vacuum state —is described by the fol-

lowing wave function:

—i 4qXq))
——

I AX'+B(y —y)1) iCX( —)]1q))

pp &x, y) = Ev'e - e (8)

The parameter q = Ze~/4n eomcu2yo is a characteristic di-

mensionless parameter in our problem —the ratio of the
Coulomb force to the centrifugal force. This parame-
ter approximately corresponds to 1

—p, in the asteroid
problem. The values of the parameters a and b for our
problem lie on the line 2a + b = 0 that intersects the
boundaries of the stability region at q = 8/9 and q = 1.
It follows from the analysis that the spectrum is indeed
real only on the island of stability.

In order to have linear stability in classical mechanics
it is sufficient that the initial positions and momenta are
sufficiently close to their equilibrium values, but this con-
dition does not guarantee the stability of a quantum me-

chanical wave packet. Owing to the uncertainty principle
a wave packet has a finite extension that must be properly
accounted for.

Our quantum mechanical analysis [7] will be based on
the Hamiltonian (2) for the oscillator in the rotating frame.
The diagonal form of this Hamiltonian is

z
2 2

co yp
2

=yo.

where S is the amplitude of the electromagnetic wave.
Note that to derive this expression we only needed to use
the dipole approximation in the z direction and that is

fully justified. The equilibrium point is on the y axis at a
distance Yo defined by the equilibrium condition:

where A, B, and C are the following functions of q.

4(q) = )I() —q)(q + 4q —qq' —»(q))/)q

B(q) = )1{1+ 2q)[q + 4q —qq-' —»(q)]/)q,

C(q) = [2 + q
—2s(q)]/3q,

(9)
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and s(q) = Ql + q —2q2. The real parts of these func-
tions are depicted in Fig. 2. VA'thin the region of stabil-

ity all three functions are real and A and B are positive.
Even for the largest value of A, the wave packet is still
almost 3 times more compressed in the y direction (par-
allel to the electric field in the rotating frame) than in the
x direction. This means that in the laboratory frame the
angular dimensions of the rotating wave packet are big-
ger than its radial dimensions. %e have found that the
best (largest) possible value of A, A = 0.0627, is obtained
when q = qb = 0.9562, roughly in the middle of the sta-

bility region. The corresponding values of the remaining
parameters are B = 0.5115 and C = 0.7816. These values
correspond to the maximally localized wave packet. The
value of the electric field corresponding to qb obtained
from the equilibrium condition is

(1 —qb)(Z/qb)' = —0.04442(Zoo )'

(12)

In order to satisfy the conditions for the validity of
our approximations, the extension of the wave packet
in the (critical) x direction measured by 1/QUA must
be much smaller than the radius Yn

= (Z jqco2)'~3 of the

orbit, leading to the condition

co «ZA/q. (13)

For the best value of q and for Z = 1 we obtain cu «
10 GHz, so that the upper boundary of the frequency is
in the range ni = 100—200 GHz and the corresponding
field amplitude is X' = 800—2000 Vlm. Since qb = 1,
even for the strong field the radius of the orbit in the
presence of the field is not much different from its value
for the same frequency when there is no Geld present.
Thus we can introduce an effective quantum number
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n defined by the formula yn = n2/Z, which relates the
radius of the orbit Yo to the principal quantum number
for high Rydberg states [8]. However, we emphasize
that the familiar n, l, m basis is not at all appropriate
here, and an expansion of our wave function in that basis
will contain many terms with comparable amplitudes. In
terms of n the condition (13)becomes n&) ~q/A which for

q = qb gives n»15.6 independent of Z. Thus our picture
of electrons moving steadily around the nucleus in the
field of the circularly polarized wave is well justified only
for sufficiently large orbits, whose radii have more than
104 atomic units. For ni = 200 GHz and for hydrogen
we obtain the field amplitude 5 = 1930 V/m and the
effective quantum number n = 60. These conditions may
not be very difficult to achieve, and the main experimental
problem in observing the atomic stability islands will
be to assemble the electron wave packet with the right
characteristics.

Our conclusions are fully supported by numerical
simulations. We have solved numerically the initial value
problem for the two-dimensional Schrodinger equation in
the laboratory frame, using a 512 X 512 grid and well-
tested techniques [9]. The initial wave function was
chosen in the form (8). In Fig. 3 we show snapshots
of packet probability contour lines at various values
of time. In Fig. 4 at full-cycle intervals we plot the
percentage of the packet probability that falls inside
the same rectangular grid that held 70% of the packet
probability at t = 0. After a decrease in the first one or
two orbits, this probability stabilizes around 50%, with
fluctuations due to spatial deformations that arise from the
nonadiabatic initiation.

In conclusion, we have shown that in the presence
of circularly polarized electromagnetic waves there exist
classically stable but nonstationary states of electrons
in atoms. In quantum theory these are approximately
described by Gaussian wave packets which must satisfy
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FIG. 2. Real parts of the Gaussian parameters A, 8, and C
plotted as functions of the parameter q. Note that the real part
of A is much smaller than the real part of B in the stability
region 8/9 & q & l.

FIG. 3. Time evolution of the wave packet in the laboratory
frame. Snapshots of the contour lines of the probability
distribution are taken 3 times per cycle for the cycles 1, 2,
3, 5, 7, and 10. The packet starts with the smooth Gaussian
shape shown in cycle 1 and moves counterclockwise.
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our case—after all the Trojan asteroids do form stable
clusters.
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FIG. 4. Values (computed at the end of the nth orbit) of the
packet probability. We included all of the packet that lies
inside the same rectangle that holds 70k of the total probability
att =0.

(13) to remain nonspreading, a condition that begins to be
satisfied in the range n = 50—100 of effective principal
quantum number. These nonspreading wave packets,
although formally similar to quantum wave packets on
Kepler orbits studied theoretically and experimentally
before [8,10], are quite special. They are held together
in dynamic equilibrium by a combination of the Coulomb
force and the rotating electric field. In order to achieve
this special stability, fine tuning of the parameters of the
wave is necessary. Although the required electric field
is quite strong in atomic units, the effect studied here
is distinct from the strong laser stabilization discussed
recently [6] because in the present case the Coulomb
force is fully included in determining the size of the
stabilized orbit. As our numerical solutions show, even
in the region around n = 60, the stability remains quite
strong, in the sense that packet probability does not
appreciably decay over many orbits. However, the packet
does exhibit quasiperiodic deformations, showing that
nonlinear effects can be important. We expect to discuss
these in detail elsewhere. The spreading of Rydberg
wave packets, originating primarily from classical causes,
as discussed by Nauenberg [10], does not occur in
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