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Large-N Chiral Field in Two Dimensions
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%e present the exact and explicit solution of the principle chiral field model in two dimensions for
infinitely large rank group. In particular we show that in the large-N limit the spectrum of the theory
does not contain pointlike particles. The energy of the ground state as a fucntion of external "Noether"
field and the beta function are explicitly found. The nonperturbative threshold behavior near the mass

gap m is f(h) —(h —m)/ 1n(h —m), exhibiting a similarity with the 1D bosonic string theory.

PACS numbers: 11.10.Kk, 11.15.Pg, 11.25.Hf, 11.30.Rd

Recent progress in the understanding of lower dimen-
sional theories is partially due to the advantage of discrete
methods. The combinatorial methods of matrix models,
as well as the continuous approaches, have appeared so
far to be ineffective for higher dimensional (D ) 1) target
space. On the other hand, it is known for a long time that
certain matrix field theories are completely integrable in
two dimensions for an arbitrary size of the matrix field.
One of the most representative integrable matrix field the-
ories is the principle chiral field

sin[(m /N) l]
sin(~/N)

(2)

where I = 1, . . . , N —1 is the rank of a fundamental
representation and m = mI is the mass of the vector
particle. In the two-loop approximation it is given by
m = AAO exp( —4m. /Ao) where A is a cutoff. All
particles are bound states of the vector particles.

At large N we must distinguish two physically differ-
ent situations: N ~ but m = mI = fixed. This means
that mI = lm~, so that the lth particle is not a bound
state any more. This suggests that the interaction van-
ishes in this limit. Below we consider a more inter-
esting limit: N ~ but the heaviest mass mN/2 of the

d'x tr[a„g'a„g],
2Ap

where g is an element of the, say, SU(N) group. Here we
present the large-(N) solution of the model on the basis of
the finite-(N) solution [I—4].

It turns out that the spectrum of the SU(N) model
contains N —1 massive particles. They transform under
the diagonal of SU(N) SU(N) and form multiplets of
all fundamental representations of SU(N) algebra, the
vector representation, and all the antisymmetric tensors
according to the Dynkin diagram. The spectrum of
masses is

largest antisymmetric tensor remains fixed. In this case
the masses fuse so that the mass spectrum becomes con-
tinuous. The label running along the Dynkin diagram be-
comes a continuous parameter. We observe that an extra
dimension emerges from the matrix structure of the field.
This means that at N ~ particles cannot be separated
either in momentum or in coordinate space, so the theory
ceases to be a theory of pointlike particles.

Quantum states of the model are characterized by the
values of the conserved left current Lt = f dx trHtg '

ilog
and right current Rt = f dx trHtr)ogg where Ht =
diag(0, . . . 1, —1, . . .0) is a basis in the Cartan subal-

gebra. We shall find the energy of the ground state
C(h) as a function of "Noether" field by adding, say,
a term QL = ih, L& or Q& = ih, Rt or both of them
to the Hamiltonian of the model (1). In what follows
we will choose for simplicity h~ = h' = h/2. The
parameters hI play the role of a chemical potential for
the elementary particles of the model, so the energy Z(h)
is the energy of the ground state with a symmetry of
the Young tableau [l~ ~",2~ ~, . . . , N~' '] where
3V& &

—
Dent

———dC(h)/dht (at finite N this quantity in

chiral models has been studied in Ref. [2,5]).
The large-N solution is explicit. It is given by Eqs. (15)

and (16).
S matrix and Beth-e ansatz equations -for any N The.—

most economical way to obtain Bethe-ansatz equations for
the chiral field is the factorized bootstrap method [3,4),
rather than direct diagonalization of the Hamiltonian of
the model [1,2]. Below we give a sketch of this approach.

(I) S matrix: The chira-l field is renormalizable and

asymptotically free. It is invariant under the left-hand and
right-hand group transformations 6 6 and the action
is expressed by elements of Lie algebra. Therefore it is
natural to assume that the elementary particles are massive
and belong to some fundamental representations of the
diagonal of 6 G.
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where P- is the projection operator onto symmetric
(anti symmetric) states.

The amplitude in the symmetric channel u(8) and
the amplitude in the cross channel (particle-antiparticle
scattering)

2
—8/2in.1

t(8) =, —1/N —8/2i m.u(i m—8)-

Furthermore, the model is integrable; therefore the
scattering is factorized. Under these assumptions the
minimal S matrix (factorized scattering matrix with
a minimal set of singularities) can be determined
unambiguously. It turns out that once we assume
that there is a particle in some, say, Ith fundamen-
tal representation, the factorized bootstrap will tell
us that there are particles in all N —1 fundamen-
tal representations. Therefore we may start from
the vector particle. The factorized SU(N) SU(N)
scattering matrix for vector particles is the tensor
product of the SU(N) factorized vector S matrices
S = X(8)S(8) 8 S(8). Here 8 is a rapidity of relativis-
tic particle (po = m coshH, p' = m sinhH) and X(8) is
the Castillejo-Dalitz-Dyson (CDD) factor which cannot
be determined by factorization, unitarity, and crossing
symmetry conditions. The SU(N) factorized S matrix
of vector particles is well known [6]. It is

S(8) = u(8) P' +
8 —i 2m'/N )

ply the balance of two particle scattering phases and a
phase of a free motion between collisions. Consider for
example a state with 3V vector particles in the box L
where all particles have the same spin. Then for the ith
particle with the momentum I sinh8;, the periodic bound-

ary conditions lead to

exp(imL sinhH ) = exp[i@ (8 —Hp)],
P=1,4u

where exp[i@(8)] = u2(8)X(8) is the amplitude of the
symmetrical channel. To obtain the Bethe-ansatz equation
for the state with a more general Young tableau one
has to consider complex rapidities of the bound states—
"strings" 8" (') 8(') + 2r mi/N, w. here 8' is a rapidity of
the lth particle and r is an integer running between —l/2
and l/2. Substituting this into Eq. (4) and multiplying
equations over r we shall obtain the equations for the
rapidities of the state which contains 2Vi particles of the
kind l. Taking the logarithm of both sides of Eq. (4) we
obtain

N —1

Lmi sinhH(') = 2m J(') + g g QI„H' —Hp, (5)
n=l a=1,4P

where Pl„(8) = gi„i(it2i„i(„t2 @(8 + 2ri m/N + 2r'in/.
N) is the scattering phase of the lth and the nth particles,
and integers J are the quantum numbers of the states. The
energy of this state is obviously

obey unitarity conditions t(8)t( 8) = u(8)u( —8—) = 1.
The minimal solution of these equations is

1
~i

E = —g m g coshHt'1.
l=l a=1

(6)

u(8) = I'(1 —8/2ni) I' (1/N +. 8/2ni).
I'(1 + 8/2ni) I (1/N —8/2mi)

(3)

Finally the CDD factor is chosen to cancel all dou-
ble zeros and double poles on the physical sheet 0 &
Im8 & m.'

sinh 28 + im/N
1

X(8) =
sinh &8 —im N

This gives the S matrix of the vector particles. It has
a pole on the physical sheet at 8b = 2ni/N in the
antisymmetric channel. The pole corresponds to the first
bound state (the second rank antisymmetric tensor) with
mass m2. The S matrix of these particles can also
be found by tensoring the vector S matrix (the fusion
procedure). It also has a pole in the antisymmetric
channel, and so on. In this way the whole mass spectrum
(2) can be generated.

(2) Bethe ansatz equations: Th-e thermodynamic prop-
erties of the model can be obtained by imposing (periodic)
boundary conditions. For an integrable problem they irn-

(3) Spectral equations: The next step is to find rapidities
to minimize the energy (6) in the thermodynamic limit

Wi/L = ni, wtule L ~. We assume that in the ground
state 8's are distributed smoothly between B& an—d Bi
with a distribution function pi(8). Then Eq. (5) implies
the spectral equations

1 Bi

mi coshH = g RI„(8 —8')p, (8')dH',
2& n

where Ri„(8) = 8&„—(1/2m)dPI„(8)/dH The Fermi r. a-

pidities BI are determined by the number of particles in
the lth representation: f 'a, pi(8)dH = ni The energy o.f
the state is then

Bl

E = g mi coshHpi(8)dH.

An explicit form of the scattering kernel RI„was found in

[2]. Its Fourier transformation is

sinh[n. cu (1 —I/N)) sinh(vr run/N)
Ri„co = 2

sinhm cu
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2N ~cu(

~2+ p+ rN

where At = Q2/N sin(m. pl/N), p = 1, 2, . . . , N—(()

I (A
{)) is the Perron-Froneius mode) is the or-

thogonal set of eigen vectors of the Cartan matrix

+( 2~( ~( + f l5(+ J 7 Then the density p obeys
the equation

B
R"'(8 —8') p (8') d 8' = (10)

N

77l
cosh& .2'

Further simplifications occur in the large-N limit,

{))( )
2N

co co + 1

Now the density p may be found in a closed form. To
see this, let us apply the operator (—i}'-/~i8- + I) on
both sides of the equation. As a result we obtain an

integral equation with the Cauchy kernel (8 —8') -'. This
equation is solvable,

4K,(8) v'8' —8' (12)

where Ko(8) is the Bessel function. Note that in the large-
N limit R{t'}(a)) vanishes at large a), whereas at finite N

it approaches 1. This implies a singular behavior of p(8)
at the Fermi point 4-B. As a result the physics on the
threshold h —)n will be changed drastically.

The value of the Fermi rapidities as a function of
number of particles can now be obtained from

at l ) n and R(„= R,(.
Large-N solution. —At large N we can consider a par-

ticular distribution of fields h( which creates all different
particles on equal footing, namely, one which follows the
spectrum of masses (2): hi = (h/m)mi. This field creates
ni = n(mi/m) particles in the lth representation (the most
representative Young tableau). In this case all Fermi mo-
menta are equal: Bi = 8 and pi = (I/N)(m)/m)p Th. en
the spectral equations (7) can be easily diagonalized.
They reflect the structure of the Cartan matrix and more-
over have the same eigenvectors

N —
1

Ri„(a))A,', ' = R" (a))B"'",

the field P. = E —g) h)ni = L —{N /-2' }h-&) are given

by

i.'(h } I~(B)
Sn KI(BI

5ingular behavior on thresh. old. The large-A' limit
exhibits new features on the threshold h in (8 0}.
At small 8 we have I)(8) {8/2 + 8"/I6 + . . } and

K) (8} I/8 + (8/2) In(8/2) + . Then, from (15}
we obtain 8 =4(h-/m — I)( ln(h/in —

I }). This gives
singular behavior on the threshold,

1

N e(h} =— — {h/ill —I }/ )In(h/m --
I }[. {17}

4&

It differs drastically from the threshold behavior i'or .~

finite-N theory of massive particles, where we would have
(see, e.g. , [2]) Pi, (h} — m" (h/—in —-I }' —.

The deviation of the threshold behavior from —, power
law indicates that at N = ~ the theory does not describe
any particles, i.e., pointlike objects with asymptotic states.
The reason for the singular behavior is the emergence
of an extra dimension in the large-N limit —the masses
of physical particles are separated from each other by
a spacing of order I /N, which is less than any energy
scale left in the system. Therefore, any external field
excites a bundle of particles (an extended object), which
is characterized by an extra "momentum" in addition to
the usual momentum.

Perturbative regime: Gell Maittt Lo))-' funt. t—iwt to'all
orders. The large h/m —regime is described by pertur-
bation theory. It corresponds to 8 ~. The renormal-
ization properties of the theory are encoded by two Gell-
Mann —Low equations: One is for a running (renormal-
ized) coupling constant h(8/c) h) A(h) = P (A). The sec-
ond corresponds to a physical quantity of interest, like
the free energy: h(ii/~}h) Int,'(h) —= 2 + y{A}. Let us de-
fine the running coupling constant as A(h)

—= 4~/8 At.
h ~ the running constant A(h) tends to its bare value

A&). Then, from (15) we find the result valid to any order
of the renormalized perturbation theory

p(8) d8 = mm

4Ko (8)
P(A) = — A

I,K) (47r/A)

4' K))(4m /A)

In turn the energy of the state with a given number of
particles is

Z/N' = m

2' cosh8p(8) d8 = . (14)
m' 1„(8)
8~ K„(8)

P{h}
%2h"-

I ~ 2n + I [(2n}!]
4A „=) 2n I (n!) 82"

The field h = (2m/N )dF/dn which .corresponds to a

given number of particles and the energy as a function of
X (A/4~}-"
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Note the asymptotic behavior of the large order coeffi-
cients b„——( —1)"Q8/(em)(4n/e)" . In the two-loop
approximation this gives

16nZ(h) h 1 h 1 7r= 1n —+ —ln ln —+ —1n —+ . .
N h m 2 m 2 2

(20)
This result reproduces correctly the one- and two-loop
terms of the perturbation theory including the universal
constant 2

In(n. /2) (the first calculation of a similar con-
stant was given in [7] for the Kondo problem; for the
chiral field models it has been computed in [5,8].).

Despite the fact that every coefficient represents a
sum over renormalized planar graphs, it grows factorially
with the order. This happens because of the presence of
renormalons (subsequences of logarithmically divergent
graphs) giving the main factorial contribution to each
order (as noticed along time ago by 't Hooft [9]). This
means that we have an exponential number of graphs in
each order but some of them give nt contributions after
the momenta integration.

Another property apparently inherent to any asymptoti-
cally free field theory is that all coefficients in (19)are pos-
itive rendering the series non-Borel summable. Neverthe-
less, there is a prescription based on analytical continuation
of the Borel transformation for summing up the series (19)
to restore the result (16):

turn mechanics) [11],if we take ~h
—

m~ instead of the cos-
mological constant

~
A —A„;,~. In the 1D matrix model the

cosmological constant controls the behavior of the fermi-
ons on the top of the Fermi sea and thus it also controls the
size of the graphs. The chemical potential ~h

—m~ in the
2D case may conceivably play the same role.

An anticipated feature of the model (also observed in
the c = 1 matrix model) is the emergence of an extra
dimension following from the matrix structure of the
theories. This dimension is related to the random walk
along the A» Dynkin diagram. The structure of this
extra (third) dimension is suggested by the fact that the
kernel (9) of the spectral equation (10) looks like a
propagator for periodic motion in the space of rapidities
and Dynkin diagram.

Perhaps the simple result of this paper may be obtained

by less sophisticated and more straightforward methods.
We would like to thank N. Andrei, E. Brezin,

M. Douglas, D. Gross, I. K. Kostov, A. Neveu, A. A.
Migdal, A. M. Polyakov, M. Schtaudacher, and Al. B.
Zamolodchikov for valuable discussions. V.K. is grateful
to the Department of Physics and Astronomy of the
Rutgers University and to the Mathematical Disciplines
Center of the University of Chicago for hospitality while
this work was in progress. P.W. was supported in part by
NSF under Grant No. DMR 88-19860.

= —=Re dte ' F(—1/2, 3/2, 1, t /4),
0

(21)
where F is the hypergeometric function for the 4D gauge
theories. Note that the integral (21), taken along the real
axis, possesses also an exponentially small (for A ~)
imaginary part equal to —K, (B)B2/m. The pre. scription is
based on analytical continuation of the Borel transforma-
tion and is also valid for some 4D gauge theories [10]. In
conclusion, we present an example of an exactly solvable
N = ~ matrix model in 1 + 1 dimensions. It is conceiv-
able that it describes a string theory in two physical dimen-
sions due to the analogy between planar Feynman graphs
and the world sheets of a string. Of course one should not
take this analogy literally: In asymptotically free theory
neither the coupling constant Ao nor a renormalized cou-
pling is a cosmological constant of a string; due to renor-
malons some small portion of the graphs has a factorially
big weight (with respect to the order). However, a less
naive string interpretation could be possible. There might
exist a (nonperturbative) parameter which controls the size
of the graphs in a new perturbation theory. The logarith-
mic behavior on the threshold reminds us of a similar result
for the ID bosonic string (emerging from the matrix quan-
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