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Relaxing the distinguished ordering underlying the derivation of soliton supporting equations leads
to new equations endowed with nonlinear dispersion crucial for the formation and coexistence of
compactons, solitons with a compact support, and conventional solitons. Vibrations of the anharmonic
mass-spring chain lead to a new Boussinesq equation admitting compactons and compact breathers. The
model equation u, + [Bu + 3yu'/2 + u' (u u, )„]„+vu, „„=0 (cu, v, 6, y const) admits compactons
and for 2' = vy = 1 has a bi-Hamiltonian structure. The infinite sequence of commuting flows

generates an integrable, compacton's supporting variant of the Harry Dym equation.

PACS numbers: 03.40.Kf, 47.20.Ky, 52.35.Sb, 63.20.Ry

In this Letter I derive and study certain nonlinearly dis-
persive partial differential equations which give rise to both
compact and conventional noncompact soliton structures.
Observed patterns in nature whether stationary or propa-
gating are usually of finite extent, yet all known conven-
tional solitons though localized are of infinite extent. This
may be due to the shortcomings of a continuum theory
but, as we shall see, at least in part this is a result of an in-

adequate mathematical modeling of physical phenomena.
A typical derivation of model equations employs a distin-
guished scaling. In such ordering one parameter controls
the balance between a weak nonlinearity and dispersion.
(As a by-product dispersion enters only on the linear level. )
Unfortunately, this eliminates other possible interplays. In
the case of a dense chain presented later, two indepen-
dent small parameters are involved; the anharmonicity of
the springs and the equilibrium distance between the mass
points. One brings in the nonlinearity, the other induces
the dispersion. A definite order between these parameters
leads to the Korteweg-de Vries (KdV) equation. But, if
we do not tie these parameters in a strict ordering, quadratic
effects in dispersion have to be retained. This leads to a
new equation and to new effects. This situation is typical,
e.g., consider the plasma ion-acoustic waves —if the ion-
electron charge separation is tied to the ion's inertia KdV
follows. But if these effects are not tied down in a definite
ordering then, again, quadratic dispersion has to append the

linear one. The equations thus obtained exhibit a variety
of conventional and compact support soliton structures.

A nonlinear dispersion model. —Consider

Kq(m, to): u, + (u )„+[q(co)]„=0, m&0,

(I)
where q(to) = u' (u" u„),. The Kq(m, to) is a nonlinear
extension of the KdV. Various values of cu arise in

different physical settings. Alternatively, consider the
differential-difference equation

u, (t) + A(u&) (u, +) —u, )) /2h = 0.
Taking A(u, ) = u, , (u, +~ + u, + u, ~)/3, or (u, +~ +
u, t)/2 and expanding up to O(h4) leads to a rescaled
form of Eq. (1) with m = 2 and 2' = —1, 1, and 2,
respectively.

Unlike conventional solitons, the solitary wave solu-
tions of Eq. (1) have a compact support That is, the.y
vanish identically outside a finite domain. In fact, for
m = 2, and co = 2, Eq. (1) is just the K(2, 2) equation
studied in some detail in Ref. [I],where I have introduced
the model equation

K(m, n): u, + (u ), + (u")„„„=0.
It is the remarkable nature of the K(m, n) compact

solutions of Eq. (2), which I call the compactons, that
motivates the present study. I intend to demonstrate
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that compactons are not esoteric mathematical objects
but arise in a wide variety of settings where nonlinear
dispersion arises naturally. Though a number of cases
with an infinite number of conservation laws was found-
the underlying nonlinear mechanism responsible for the
coherence and robustness of interaction remains very
much a mystery.

Let me recall that though for various members of the
K(m, n) family only a finite number of local conservation
laws were found, nevertheless collision between the
K(2, 2) compactons appears to be as elastic as numerical
experiments are capable of detecting and they always
reemerge with exactly the same coherent shape (see [1]
for visualization of this process). Numerically, the K(2, 2)
always decomposes compact initial data into a number
of compactons and possibly anticompacton(s) [1]. These
compactons appear to play the role of nonlinear local basis
functions. Similar properties are shared by many other
equations in the K(m, n) family simulated in [2].

Equation (1) can be rewritten as

(u ), + a(u" "' '), + o.(u u„,),. = 0. (3)

with a third conserved quantity u"' '/(m + 1) —uu'-, /2.
For cu = 1, both u cos(x) and u sin(x) are also con-
served [1].

From (3) a one parameter family of traveling waves is
obtained via the periodic solution of

V (aV ' + o Vrr —1) = Pq,

where u = APV(A" g), P = 1/(m —1), ~ = P(m —2)/2,
and g = x —Ar. In particular, for Po = 0 all

Kq (m = 2, cu) compactons are obtained from the

periodic solutions (C = const)

u = As [1 + C cos(g/s)]/o, 5 = M + 1.

As C 1 these waves turn into a train of compactons
separated by a singularity at u = 0 where the cornpactons
do not communicate with each other and thus can be split
into separate entities given as (U = 2As /rr)

u,.(x, r) = U cos'[(x —At) /2s], ~x —Ar~ ~ s7r,

(6)
and vanish elsewhere. Note that unlike the KdV soliton,
which narrows as the amplitude (speed) increases, the
invariance of (1) under u nu and r t/n, for m = 2
and n = const, implies that cornpactons width is fixed
and independent of the speed. This means that when
m = 2, there is a detailed balance between nonlinear

where o = 2~ + 1 and a = mo. /(m + 2cu). Hence,
both u and u are conserved quantities. The availability
of other conserved quantities depends on the particular
value of cu. For cu = 2, Eq. (1) is obtained from a
Lagrangian density [3], u = P, ,

L = ptp /2 + (tt'I, ) /(m + 1) + (1(1,. )p„„,/4. (4)

Du, + Bu, + 3yuu, + [q(o))],. =- 0, 0=1+ vA„.

Equation (9) has the same scaling properties as Eq. (1)
and in two cases is found to be integrable in the
conventional sense.

I limit myself here to cu = 0.5. To find traveling waves
take j = x —Ar. After two integrations of (9) we have

(6 —A)u + yu' + (u —Av)u-, . = Pou + Pi, (10)

with Po and P~ as constants. If P() = I'] = 0, theconven-
tional solitonic pattern follows from (u = y V, II = vy)

v;. = yv2(8 —A+ v)/(Afl —v)

%hen y ~ 0, the soliton is a wave of depression f'or
V & 0 and 0 & A & 6 and an elevation wave for V & 0
and A ~ 6. %hen y & 0 and V ~ 0, the soliton's speed
is constrained by A(1 —y v) ~ 6. In the exceptional case
of equality

u = Av exp( —p, (&[),

and A = 6/(I —vy) is a unique speed of propagation.
But, if vy = 1 and 8 = 0, every speed A in (12) becomes
admissible.

If y ~ 0 then, in addition to solitons, the system sup-

ports compact structures. But unlike the typical soliton

convection and nonlinear dispersion. Using n === —
1 also

implies negative anticompactons propagating to the right.
%'hen m & 2, nonlinearity overcomes dispersion and at

high amplitudes narrows the resulting compacton.
A glimpse into higher dimensions is given via a nonlin-

ear extension of the Kadomtsev-Petviashvili equation

[ut + Eu )& w q(QJ)x iq + tlat ~ II;

which can be mapped into Eq. (1) [3]. This results in

compactons residing on a traveling paraboloid strip [4].
A mixed dispersion model. —The KdV and the

Kq(m, cu) [or the K(m, n), Eq. (1) or (2)] represent two
conceptual extremes in which either linear or nonlinear
dispersion is present. However, in physical applications
often both linear and nonlinear dispersions are present.
As different dispersion expressions are usually equivalent,
up to asymptotically higher orders„, I will use this freedom
and seek to append Eq. (1) with linear dispersion which
preserves the scaling symmetry of Kq (m, or). For m =:= 3

the scaling balance is preserved if Eq. (1) is appended
with B5.u [5]

ui + (u )i + [q(cd)] + 71
' = ()

and is known to be integrable in three cases [6].
I shall pursue the m =—2 case. To preserve the scaling

of Eq. (1), it has to be appended with linear dispersion of
the form 8"-„u, and/or 84u, . (The quintic term replaces the
cubic term upon its vanishing [7].) Thus Eq. ('1) appended
with u. .. and convection reads ( p. 6, y are parameters)
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V = 2Vocos (g/2),

and zero elsewhere. In the original variables

(15)

u = [A(1 —yv) —8]cos I~y (x —At) /2] /y. (16)

For y = 3, 8 = v = 0 this is compacton (6). Linear
dispersion modifies its speed-amplitude relations. When

Vo = 0, (15) vanishes and, if r = 0, a new compacton
[A = 8/(I —vy)],

u = A. v cos(x —At), lx —Arl ~ ~/2, (17)

and zero elsewhere, is born. As in (12), when 0 =
vy = 1 and 6 = 0, every speed A is admissible. Thus
with the collapse of the compacton (16) a new one (17),
not possible in Eq. (1), emerges. For this compacton the

presence of linear dispersion in a particular balance with
convection (i.e., vy = 1) is essential.

The two exceptional solutions (12) and (17) are mir-

rors of each other. In both cases 0 = yv = 1 and equa-
tion (9) may be casted into a bi-Hamiltonian form and
thus has an infinite number of conservation laws. For
y ) 0 this will be shown below. For y = v = —1 the
integrability was shown in [8] but holds for all values of
y +OandvtiedbyQ =1.

To study the exceptional case, I take 8 = 0 and y ) 0.
Equation (9) now admits only compactons. In rescaled
foITO

p, + 3uu„+ [q(0.5)]„=0,

p = D+Q,

or if P2 = p we obtain

$, +(ug), =0,
D+u=P,2

D =1~8

(18a)

(18b)

(19a)

(19b)

(19c)

From Eqs. (18) and (19) observe the conservation of
p and P. By multiplying (18a) by u and integrating
by parts, we obtain the conservation of H& = J up dx.
Modifying the Lagrangian (4) yields the Hamiltonian

case, some compactons emerge for nonzero values of in-
tegration constants T. o unfold this case I rescale Eq. (9)
as x* = xp„ t* = tp, , 6* = 6/p2, and p, = y. In the
rescaled Eq. (10), y ~ 1, v ~ vy = 0, and I combine
Po, and P~ into one parameter —r .Let X = 8/yA and
V = u/A, then (10) reads

(n —v) v'+ (n+ y —1)v —r'+ v,' = 0.

(13)

Equation (13) has an r family of trigonometric solutions

V= r + Vocos —Vo, 2VO=A+ —1.
(14)

For r = 0, a compacton solution emerges

4) =D 8 and 42=8,p+ pR

Combination of operators 4& and 42 is exactly of
the form used in the KdV theory. Their compatibility
assures the bi-Hamiltonian nature of the problem. The
recursion operator R = C&2@t

' and its transpose are
then recursively used to deduce an infinite number of
conservation laws [9,10] and hierarchy of commuting
flows. From these conservation laws both an upward and
downward chain of conserved quantities are formed via
recursive relations. For H „, n & 0,

BH „/Bp = 42 'kiBH „+i/Bp,

and all 0 „are distinguished by being described in terms
of p. The same is true for the hierarchy of commuting
flows. In particular, the flow generated for n = 2 is

p, = —a„D (p ")/2.
Define r = 1/p; then the resulting equation

r, =r 8 D+(r')/2

(21a)

(21b)

is a ne~, integrable, compacton generating equation. It
has both traveIing and stationary compactons

r = [2m A cos[3(x + At)/2]}

and

r = rocos (x/2)

respectively. This may be looked upon as a "compacti-
fied" extension of the Harry Dym (HD) equation [11].

Alternatively, note that (r, x) (it, ix) transforms one
integrable case into the other (D+ D, y) 0 y &

0) and thus aff'ords an immediate adaptation of the
conserved quantities and flows derived in [8]. Similarly,
D+ D in (21a) yields a new integrable extension of
the HD equation [8]. Again, one begets compactons,
the other soiitons. %hiie soiitons and compactons are
different entities, from the point of view of conservation
structures these differences are irrelevant. Dual relations
between solitons and compactons are studied in more
detail elsewhere [11].

For 6 4 0, one proceeds as before with only small
modifications. For y ( 0, (11) yields smooth solitons.
For y ) 0, it is seen from (16) that conventional solitons
are possible, while compactons have a unique amplitude
b. It is unclear whether compact and noncompact solitons
emerge simultaneously.

density (energy integral)

g g —g

H2 and H~ form a Hamiltonian pair. Therefore, Eqs. (18a)
and (18b) may be written in two equivalent forms

p, = —4iBHp/Bp = 4p—BH(/Bp

and two Poisson structures defined via
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Vibrations of a dense chain —. Consider the motion of
N initially equally spaced (h « 1) mass points m. The
potential part of the Hamiltonian is assumed to be

H„= PP(S), S = (y„ i
—s„)/h. (22)

P(S) is either a purely anharmonic P&(S) = n,&S'/N
or a mixed potential P(S) = n2S"-/2 + n3S-'/3. The
anharmonicity parameter n3 is assumed to be numerically
small but otherwise is free and is not tied to h in any
particular ordering. Expanding in h up to O(h~)s I obtain

P (S) P (y)=y (y,. —hC y )

N = l, 2, 3, . . . , (23)

Hp~H= Ptv(y, ) dx, C~ = 1/12, 1/4, 1/2. . . . .

Q"(t) + ~ 'Q '(t) =-0- (26a)

(ts is a separation constant) with the periodic solution

Q (t) = cn(tr t, I/+2), and Z(x) satisfies

[Z(Z ), ,-]„, + (Z'), , + K-Z = 0 (26b)

having among others, the following compact solution

Z = v8t~cos(x/2) when [x[ ~ 7r (27)

and vanishes elsewhere. While robustness of this partic-
ular solution is as yet unknown, extensive numerical stud-
ies [1,2] indicate that compactons smoothness at the edge
is not indicative of their stability [12].

Equation (24a) is the Boussinesq equation due to
Kruskal and Zabusky, but appended with a nonlinear
dispersion. Like its predecessor its dispersion has a
"wrong" sign. One can synthesize from (24a) a one-sided
equation or regularize to underlying expansion [7]. To
this end the discrete energy (22) is replaced with a Pade
approximant, which unlike y2 —ey2„, derived by Taylor
expansion, preserves the boundedness of the original
potential energy. Thus (y, Ly, ), where in Fourier space
L (k) = 4sin2 (kh/2), is approximated by a bounded
operator L& = 1/(1 + ek ) Explicitly. ,

Hp = gP~(S) (y, Lv, ) dx,

and the resulting equation of motion is (u = v, e =
h2/12),

u„= (n. u + aalu-)„+ en2d', u+ 2e. n3[q(1/2)]„.

{24a)
Equation (24a) admits both compactons and conventional
solitons [11]. Similarly, for the purely anharmonic, say
quartic, potential, in normalized units I obtain

ur( = (u )~r + [u(u ) lisv (2S)

with a purely cubic nonlinear dispersion. In addition to
the compacton solution +2Acos(x —At), Eq. (25) also
supports breathers of the form u = Q(t) Z(x), where Q (t)
satisfies

with the resulting equation of motion

I

lt (
= (aalu + tlqu )vv

+' F»', H( I eo)(Ct(1/ I],
s

{24b)
Equation (24b) unlike (24a) is well posed. It admits both
compact and conventional solitons. The model Eq. (9)
is it» one-sided version. A similar regularization of (25)
appends it with eu„„and results in a compact breather
similar to (26a).

In summary, the equation governing the motion of a
dense chain is a prototype of compacton supporting equa-
tions. The derivation relaxes the distinguished scaling and
is also applied to study the motion of ion-acoustic v ave~

[11]and a flow of a two-layer liquid [13]. It yields com-
pacton supporting equations. Among the solutions of the

prototypical Eq. (9), two integrable cases were found.
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