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Anisotropic Scaling in Depinning of a Flux Line
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We study the depinning of a flux line by analytical and numerical methods. Transverse fluctuations
do not influence the critical behavior of the longitudinal component justifying “planar approximations.”
In an isotropic medium, longitudinal fluctuations have a roughness exponent {; = 1, and relax with
a dynamic exponent z; = 4/3; transverse fluctuations are suppressed (£, = 1/2 < ¢j), and relax more
slowly, with z, = z; + 1. Anisotropy in the depinning threshold, or orientational dependence of force-

force correlations, lead to new universality classes.

PACS numbers: 74.60.Ge, 05.40.+j, 05.60.+w, 64.60.Ht

The pinning of flux lines (FLs) in type-II superconduc-
tors is of fundamental importance to many technological
applications that require large critical currents [1]. Upon
application of an external current density J, the motion
of FLs due to the Lorentz force causes undesirable dis-
sipation of supercurrents. Major increases in the critical
current density J. of a sample are achieved when the FLs
are pinned to impurities. There are many recent stud-
ies, both experimental [2] and theoretical [3], on collec-
tive pinning of FLs to point or columnar defects. Another
consequence of impurities is the strongly nonlinear behav-
ior of the current slightly above the depinning threshold as
the FLs start to move across the sample. Recent numeri-
cal simulations have concentrated on the low temperature
behavior of a single FL near depinning [4-6], mostly ig-
noring fluctuations transverse to the plane defined by the
magnetic field and Lorentz force. Common signatures of
the depinning transition from J < J, to J > J, include
a broadband (f ¢ type) voltage noise spectrum and self-
similar fluctuations of the FL profile.

The FL belongs to a broad class of elastic systems
that exhibit a depinning transition: a dynamical critical
phenomenon seen in charge-density waves (CDWs) [7—
9], interfaces in random media [10,11], and contact
lines [12,13]. There has been much recent progress in
calculating the critical exponents of such transitions by
renormalization group (RG). Here, we use these methods
to study the full three-dimensional dynamics of a single
FL at low temperatures. We show that fluctuations
transverse to the average motion of the FL. do not change
the scaling properties of the longitudinal component. In
turn, the transverse fluctuations are suppressed and relax
much more slowly (with a larger dynamic exponent).
Thus, in addition to formally justifying the neglect of
transverse fluctuations (i.e., planar approximations) in
simulations near depinning, we also demonstrate the rich
anisotropic scaling properties of this system.

In the simplest case of an isotropic pinning potential,
longitudinal fluctuations have roughness exponent ¢ = 1
and dynamic exponent zj = 4/3, while ¢, = 1/2 < ¢
and z, = zj + 1 for the transverse components. With an
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anisotropic pinning potential, if the FL is driven along a
nonsymmetric direction, transverse fluctuations are further
suppressed to £, = 0. If force-force correlations depend
on the orientation of the FL as well as its position,
the critical behavior falls into yet another universality
class, possibly controlled by directed percolation clusters.
Thus, the depinning behavior is quite rich, described by a
number of distinct universality classes.

_ Consider the setup in Fig. 1 with a magnetic field
B = B#, and current density J. The conformations of the
FL are described by R(x,t) = x% + r(x,t), where r is a
two component vector. Each element of the FL is acted
on by three forces: (1) a line tension that opposes any
berlding, Fg = KX curvature; (2) the Lorentz force F; =
$oJ X i, where ¢ is the flux quantum and 7 is the unit
tangent vector; (3) a random fqrce Fp = :VV due to the
impurities. The projection PF = F — (F - 1) of these
forces onto the local normal plane must be equated to the
dissipative forces from the motion of the FL, leading to

Pimor + mar) x i = P{Fg + Fu + Fz}. (D)

These equations are highly nonlinear and generalize those
of Ref. [6]. The parameters 7;, 7,, and K can be derived
from a time-dependent Ginzburg-Landau theory [14].

FIG. 1. Geometry of the fluctuating flux line.
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We shall initially neglect the Magnus force (due
to nonzero 77;), nonlinear terms, and the effect of an
anisotropic medium and return to them at the end. Thus,
the simplest evolution equation for a FL is

wlar = Kda’r + F + f(x,r(x,t)). (2)

where = 7', and the terms on the right correspond
respectively to the linearized versions of the forces in

Eq. (1). The random force f(x,r) has zero mean with
correlations
Falx.O)fy(xX' 1) = 84y8(x — XNA(r = ¢'l).  (3)

where A is a function that decays rapidly for large

arguments. The uniform driving force F = $od X &.
While the FL is pinned by impurities when F < F,

above the threshold we expect a velocity v = ve), with

v~ (F = F))P. (4)

where B is the velocity exponent. Superposed on the
steady advance of the FL are rapid “jumps" as portions
of the line depin from strong pinning centers. Such
jumps are similar to avalanches in other slowly driven
systems and have a power-law distribution in size, cut off
at a characteristic correlation length £. On approaching
the threshold, ¢ diverges as ¢ ~ (F — F.)7%, defining a
correlation length exponent v.

A major difference of our model from previously
studied ones is the two-dimensional nature of r(x,7). One
consequence is that the FLs can go around each other,
invalidating a “no passing” rule [9], applicable to CDWs
and interfaces. It is thus possible to have coexistence of
moving and stationary FLs in particular realizations of the
random potential. Another consequence is that we can
separately examine fluctuations parallel and perpendicular
to the average motion of the FL, obtaining (at length
scales up to ¢) the anisotropic dynamic scaling forms,

((ry(x, 1) = r(0,0017) = Ix|*gy(e/lx|), (5a)

(ri(xe,0) = r (0,00 = |x|*-g (¢/Ix[*).  (5b)

where ¢, and z, are the roughness and dynamic expo-
nents. The scaling functions g, go to a constant as their
arguments approach 0. Beyond the length scale ¢, differ-
ent regions of the FL depin more or less independently,
and the system crosses over to a moving state described
by different exponents ¢, and z.

The effects of transverse fluctuations r, for large driv-
ing forces, when the impurities act as white noise, were
studied earlier [15], indicating a rich dynamical phase dia-
gram. How do these fluctuations scale near the depinning
transition, and do they in turn influence the critical
dynamics of longitudinal fluctuations near thresh-
old? The answer to the second question is obtained by
the following qualitative argument: Consider Eq. (2) for
a particular realization of randomness f(x,r). Assuming
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that portions of the FL always move in the forward
direction [16], there is a unique point r (x.r)) that is
visited by the line for given coordinates (x,rj). Now
construct a new force field f’ on a two-dimensional space
(x, ry) through f'(x.ry) = fi(x.ry.r_(x,ry)). Tt is clear
that the dynamics of the longitudinal component rj(x.1)
in the old force field f(x,r) is identical to the dynamics
of ry(x,1) in f'(x,ry), with r; set to zero. It is quite
plausible that, after averaging over all f, the correlations
in f" will also be short ranged, albeit different from those
of f. Thus, the scaling of longitudinal fluctuations of the
depinning FL will not change upon taking into account
transverse components. However, the question of how
transverse fluctuations scale is yet unanswered.

Certain statistical symmetries of the system restrict
the forms of response and correlation functions. For
example, Eq.(2) has statistical space- and time-
translational invariance which enables us to work in
Fourier space, i.e., (x,t) — (g,w). For an isotropic
medium, F and v are parallel to each other, i.e., v(F) =
v(F)F, where F is the unit vector along F. As all ex-
pectation values involving odd powers of r; are zero
due to statistical invariance under r. — —r,, linear
response and two-point correlation functions must be
diagonal. The critical exponents are then related through
scaling identities derived from the linear response to an
infinitesimal external force field (¢, w),

r'ir,,(q.w)>
deplq. )

XQ'B(C[,C!)) = < = 6{15,\/(}((19 w). (6)

in the (¢,w)— (0,0) limit. Equation (2) is statisti-
cally invariant under the transformation F — F + &(g).
r(q.w) — r(q,w) + g *e(g). Thus, the static linear
response has the form x(g,w = 0) = y (g, w = 0) =
g *. Since g scales like the applied force, the form of
the linear response at the correlation length ¢ gives the
exponent relation

g+ /v =2 (7)

Considering the transverse linear response seems 10
imply ¢, = ¢;. However, the static part of the transverse
linear response is irrelevant at the critical RG fixed point,
since z, > zj, as shown below. When a slowly varying
uniform external force () is applied, the FL responds as
if the instantaneous external force F + & is a constant,
acquiring an average velocity,

VU,

aF,

(0:ra) = vo(F + &) = vo(F) + £y. (8)

Substituting dvy/0Fy = dv/dF and dv,/dF = v/F
and Fourier transforming gives

xi'(qg=0,0) = —iwdv/dF)"" + O(w?). (9)

Y Mg =0w)=—io@w/F)" + 0w (10)
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Combining these with the static response, we see that
the characteristic relaxation times of fluctuations with
wavelength & are

-1
(g = £7) ~ (qz—d—v> ~ gD ga,

dF (an

( — —1) ~( 22)_1 — £2+B/v __ §Zl (12)
71(g=¢§ q F 3 s

which, using Eq. (7), yield the scaling relations
B = (z1 = &, (13)
(14)

We already see that the dynamic relaxation of transverse
fluctuations is much slower than longitudinal ones. All
critical exponents can be calculated from ¢, {,, and z),
by using Egs. (7), (13), and (14).

Equation (2) can be analyzed using the formalism of
Martin, Siggia, and Rose (MSR) [17]. Ignoring trans-
verse fluctuations, and generalizing to d dimensional in-
ternal coordinates x € R4, leads to an interface depinning
model studied by Nattermann, Stepanow, Tang, and
Leschhorn (NSTL) [10] and by Narayan and Fisher (NF)
[11]. The RG treatment indicates an upper critical dimen-
sion of 4 and exponents in d = 4 — € dimensions, given
to one-loop order as { = €/3 and z = 2 — 2€¢/9. NSTL
obtained this result by directly averaging the MSR gen-
erating functional Z and calculating the renormalization
of the force-force correlation function A(r) perturbatively
around the freely moving interface r(x,7) = vt. NF, on
the other hand, used a perturbative expansion of Z around
a saddle point corresponding to a mean-field approxima-
tion [18] to Eq. (2), which involves temporal force-force
correlations C(vt). They point out some of the deficien-
cies of conventional low-frequency analysis, but also sug-
gest that the roughness exponent is equal to €/3 to all
orders in perturbation theory.

Following NF, we employ a perturbative expansion of
the disorder-averaged MSR partition function around a
mean-field solution for cusped impurity potentials [11].
All terms in the expansion involving longitudinal fluc-
tuations are identical to the interface case, leading to
the same critical exponents for longitudinal fluctuations,
i = €/3and z; = 2 — 2€/9 + O(€?). For isotropic po-
tentials, the renormalization of transverse temporal force-
force correlations C, (vt) yields ¢, = { — d/2, correct
to all orders in perturbation theory. Details of this calcu-
lation will be given elsewhere [19]. For the FL (e = 3),
the critical exponents are then predicted as

=1, z) = 4/3, v=1,
B =1/3, {1 =1/2, 7. =~ 17/3.

To test the scaling forms and exponents in Egs. (4)
and (5), we numerically integrated Eq. (2), discretized
in coordinates x and ¢. Free boundary conditions were

L =3 + l/V

(15)

used for system sizes of up to 2048, with a grid spac-
ing Ax = 1 and a time step At = 0.02. Time averages
were evaluated after the system reached steady state. Pe-
riodic boundary conditions gave similar results but with
larger finite size effects. Smaller grid sizes did not change
the results considerably. The velocity v(F) seems to fit
the scaling form of Eq. (4) with an exponent 8 = 0.3,
but is also consistent with a logarithmic dependence on
the reduced force, i.e., B = 0. Similar behavior was ob-
served by Dong et al. in a recent simulation in 1 + 1
dimensions [5]. Since zj, and consequently 3, is known
only to first order in e, higher order corrections are
expected. By looking at equal time correlation func-
tions (see Fig. 2), we find that transverse fluctuations are
strongly suppressed, and that even though the scaling be-
havior is not very clean the roughness exponents match
our theoretical estimates within statistical accuracy. The
good agreement for € = 3 supports the claim that the
theoretical estimates are exact [11]. However, numeri-
cal work by Leschhorn [20] on a lattice model in 1 + 1
dimensions finds a roughness exponent of 1.25 at thresh-
old. A value of ¢ > 1 cannot be determined from exam-
ining the correlation functions [21] and also necessitates
inclusion of nonlinear terms in the equation of motion.

The predicted anisotropy in critical exponents may be
observed in a rectangular Hall geometry by measuring
the noise power spectra Sjj(w) and S, (w), of normal and
Hall voltages. In a conventional type-II superconduc-
tor with point defects, at low temperatures and near de-
pinning, Egs. (5) suggest that [6] S,(w) ~ w ™%, where
aq = (2{s + 1)/zo — 1. Thus, Sj(w) ~ @ ~>/*, whereas
S, (w) ~ 0!/ at small w.

The potential pinning of the FL in a single supercon-
ducting crystal is likely to be highly anisotropic. For ex-
ample, if B is parallel to the copper oxide planes of a
ceramic superconductor, F.(9) depends on the direction of

s ®Llong., {,=0.94+0.05
10" I mTrans., {, =0.50 +0.02

Ix-X’

FIG. 2. Equal time correlations as functions of separation x,
for a system of size 2048 at (F — F.)/F. = 0.01. The observed
roughness exponents are close to the theoretical predictions of
) =1, £, = 0.5, shown by solid lines for comparison.
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v, being smallest along the copper oxide planes. Also, a
nonzero Hall angle (due to the Magnus force) gives rise to
a nondiagonal mobility matrix. Both effects can be stud-
ied by replacing the parameters x and K in Eq. (2) with
matrices, and also setting (f,(x,r)fg(x",r")) = Aypx —
x',r — r'). Equations (6), (9), and (10) have to be modi-
fied, since v and F are no longer parallel, and the linear
response function is not diagonal. The RG analysis is
more cumbersome: We find that, for depinning along a
generic direction, the longitudinal exponents are not modi-
fied (in agreement with the argument presented earlier),
while the transverse fluctuations are further suppressed
to ¢, =2 — 2 (equal to zero for ¢ = 1). Relax-
ation of transverse modes are still characterized by z, =
zy + 1/v, and the exponent identity (7) also holds. The
exponents for depinning along the hard and easy axes with
reflection symmetry are the same as in the isotropic case.

Even more generally, we expect the depinning thresh-
old to depend on both the orientation of the velocity
and the flux line, i.e., F. = F.(,0,r). Such dependence
generates nonlinearities in the equation of motion. Thus
including all nonlinearities due to the reparametrization
invariance implicit in Eq. (1), as well as any additional
ones due to anisotropy, leads to a most general equation
of motion of the form

0ira = mapFp + Kapdxrg + Kaﬂazrﬁ

+ %Aaﬁyaxrﬂaxry + falx,r) + -0 (16)

with force-force correlations that may also depend on
d,r. Depending on the presence or absence of various
terms allowed by symmetries, these equations encompass
many distinct universality classes [19]. In the absence
of transverse fluctuations, the problem is similar to the
anisotropic depinning of an interface in 1 + 1 dimen-
sions [22]: The interface (FL) gets pinned by directed
percolation clusters [23]. Along a symmetric axis (k = 0
and A # 0) ¢ = 0.63, while for generic directions with
k #0, ¢y = 1/2. Since no perturbative fixed point is
present in these cases, it is not clear how the behavior
of transverse fluctuations can be explored systematically.

In conclusion, we have studied the dynamical critical
behavior of a single depinning FL in type-II supercon-
ductors at low temperatures. Using symmetry arguments,
we demonstrate the anisotropy in both the configurational
and relaxational properties of the FL, which is confirmed
by a formal RG treatment and numerical simulations.
This justifies the “planar” approximation, widely used in
numerical simulations of a depinning FL. Due to possible
anisotropies in the pinning force, the depinning behavior
is quite rich, encompassing a number of different univer-
sality classes. In the fully isotropic case, RG calculations
suggest anisotropic scaling with z, = z; + 1 and £, =
1/2, consistent with our numerical simulations.
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Anisotropic potentials, nonlinearities, and orientation
dependent force correlations lead to new exponents, some
of which we have obtained.
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