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Indications of Spin-Charge Separation in the Taro-Dimensional t-J Model
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We have calculated the high temperature expansion for the density correlation function N(q) of
the toro-dimensional t-J model. On extrapolation by Pade approximants to lour temperatures me
find that N(q) has 2k' as a characteristic wave vector. Previous studies have shown that n~ has a
steplike feature at ks and S(q) has 2ks as a characteristic wave vector. Here ks and ks are the
Fermi wave vectors of the nearest-neighbor square lattice tight-binding and spinless fermion models,
respectively. By comparison to known results for one dimension this suggests spin-charge separation
in the taro-dimensional t-J model.

PACS numbers: 74.20.Mn, 74.72.—h

The study of strongly correlated electrons in two di-
mensions (2D) is currently one of the most interesting
and controversial topics in condensed matter physics,
particularly with regard to high temperature supercon-
ductivity (HTSC) [1]. Anderson [2] has put forward the
idea that the ground state of strongly correlated elec-
tron systems in 2D is a Luttinger liquid analogous to
the case in one dimension. In 1D, a Luttinger liquid has
spin and charge degrees of freedom with difFerent veloc-
ities and wave vectors, behaving at low energies as in-

dependent elementary excitations, a situation which has
become known as spin-charge separation [2].

Determining whether or not spin-charge separation can
also occur in 2D has proven quite difficult. We have
used high temperature expansions for equal time correla-
tion functions (ETCF) of the 2D t-I model [3] to inves-
tigate this possibility. This combines previously calcu-
lated series for the momentum distribution function [4]
and the spin correlation function [5] with a newly calcu-
lated series for the density correlation function. We find
two distinct characteristic wave vectors for the spin and
charge degrees of f'reedom, 2k~ and 2kssF defined below.
This shows that the spin and charge degrees of freedom
have difFerent distributions in the Briliottln zone and may
provide an indication for spin-charge separation in this
model.

We consider the 2D t-J model on a square lattice,
where the Hamiltonian is

) (c,'. c, +H.c.)+ J ) S; S, , (1)

with the constraint of no double occupancy. The con-
straint represents the strong correlations between the
electrons and is difBcult to treat by conventional many-
body techniques.

We have studied three ETCF of this model using the
high temperature series expansion method. These are the
single spin momentum distribution function, n„, and the
equal time spin and density correlation functions, S(q)
and N(q), defined by the relations

n„= ) e'"'( tcpc, ),

S(q) = ) e'~'( SpS),

N(q) = ) e'~'(b, npb, n),

IV(q) = n —g
cd

(2 )z k 4+~ ) (3)

where g = 2 for TB or g = 1 for SF, and 4S(q) = N(q)
for TB. From the form of this equation we can see that

where the angular brackets refer to thermal averaging
in the grand canonical ensemble, S; =

2 Q &
ctacrz&csp

and An, = Q ct c, —n. Here n is the average density
of electrons. The expansions are calculated for n„[4] to
eighth order and S(q) [5] and IV(q), to tenth order in
the reciprocal temperature T i, first at fixed fugacity,
and then by a change of variables at fixed n The se-.
ries are extrapolated at fixed n by Pade approximants to
determine the low T properties.

The form of the ETCF for tight-binding (TB) (nonin-
teracting, spin-half electrons with nearest-neighbor hop-
ping on a square lattice) and spinless fermions (SF)
(physically, SF are fully spin-polarized TB electrons,
freezing out the spin degrees of freedom and doubling
the number of occupied k states) in 2D are helpful in un-
derstanding the t Jmodel result-s presented below. They
are given by
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FIG. 1. Plot of N(q) at T/J = 0.5 and J/t = 0.5 along
the irreducible wedge for a range of n. The data points are
the t-J model and the solid lines are spinless fermions for the
same temperature. The small vertical arrows are the T = 0
locations of nesting vectors for spinless fermions.
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FIG. 2. Plots along the diagonal I' ~ M at n = 0.20. (a)
Single spin momentum distribution function. Data points,
t Jmodel; -solid line, tight-binding model at T/J = 1.0. (b)
Spin correlation function. Data points, t-J model; dashed
line, T = 0 tight-binding model. (c) Density correlation func-
tion. Data points, t-J model; solid line, T = 0 flux phase
mean field approximation for hard core bosons; dashed line,
T = 0 spinless fermions; and dotted line, T = 0 tight-binding
model. The vertical dashed lines indicate the important wave
vectors along this line in the Brillouin zone for tight-binding
electrons and spinless fermions: nesting wave vectors 2k~~M
and 2k~~M, or Fermi wave vectors ks rM and g „M. (d)—(f)
Same as (a)—(c) with n = 0.75. K„M = (2n, 2n ) is a reciprocal
lattice vector.

Our calculated 2D ETCF show behaviors very similar
to their counterparts in 1D. The characteristic wave vec-
tors for S(q) and N(q) are 2k~ and 2k+, respectively,
which we believe implies low energy spin degrees of free-
dom near kF and low energy charge degrees of freedom
near kszF. Note that in 2D k~ and kszF are incommensu-
rate wave vectors; the charge degrees of freedom do not
occur at a harmonic of k~, but at an independent wave
vector. In Fig. 3 we show k~ and k+ for the whole Bril-
louin zone at n = 0.75 with representative nesting wave
vectors. For weak coupling calculations of the 2D Hub-
bard model [12] and Gutzwiller projected free electrons
[13] the picture is quite different. In these cases while
S(q) is enhanced and N(q) is suppressed, they both have
2k& as a characteristic wave vector which is not what we

at T = 0 and n & 1 the ETCF will saturate at n when n„
and n„+~ no longer overlap [note that for SF with n ) 0.5,
N(q) saturates at 1 —n when the hole Fermi surfaces no
longer overlap]. The Kohn anomaly [6] at 2k~ or 2k@
is due to the existence of a sharp Fermi surface.

In Fig. 1 we compare N(q) of the 2D t Jmodel to-N(q)
of SF at the same density for T/J = 0.5, J/t = 0.5, and
a range of n The si.milarities are remarkable throughout
the Brillouin zone, with the differences near the I' point
due to the t Jmode-l having a larger compressibility than
SF. To focus the discussion below we now limit ourselves
to two sets of parameters outside of the phase separated
[7] or ferromagnetic [8] regions of the 2D t Jmodel. W-e

fix J/t = 0.5 and consider n = 0.75 and n = 0.20. The
results for n„, S(q), and N(q) along q„M = (0, 0) -+
(7r, 7r) are shown in Fig. 2. We see that n„- 1/2 at
kFrM, the Fermi momentum of the TB model at the
same density [4,9] and S(q) is enhanced over its TB value
and either flattens out or has a peak [5] at q 2k' rM.
However, the most anomalous curves are for N(q). They
are suppressed from their TB values and flatten out at
q = 2kFsF&M, the Fermi momentum of SF at the same
density. We observe no feature at q = 2k~, though N(q)
flattens out more gradually for n = 0.20 than for n =
0.75.

For comparison, we recall the behaviors of n„, S(q),
and N(q) for the U/t —+ oo Hubbard model (J/t ~ 0 tJ-
model) in 1D. Prom the work of Ogata and Shiba [10)
we know that n, has a power law singularity at kF with
nl, = 1/2. Also S(q) has a peak at 2k~ and N(q) has
2k/ = 4k~ as a characteristic wave vector. For arbitrary
U/t, N(q) also has a feature at 2k~ due to a mixture of
spin and charge excitations, but the 2k+ feature is due
to charge alone [11]and shows that the charge degrees of
freedom truly reside at k+F. In addition to the singularity
at k~, n„has a singularity at 3k~, but with a very small
step size.
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FIG. 3. Fermi wave vectors for n = 0.75. Solid curve,
tight-binding electrons; dashed curve, spinless fermions. The
arrows are representative nesting wave vectors along I'M and
MX.

find for the 2D t Jmodel-. The behavior of n„ is also
similar to 1D. The step in n„at n = 0.20 is comparable
in size and shape to the TB model at the same T, but
at n = 0.75 the step is much weaker and too smeared
out to be explained by thermal broadening alone [4]. We
have not seen any evidence for a singularity at 3k~ in

2D. This could be due to the relatively high tempera-
ture T/ J = 1.0 in our calculation or possibly the angular
averaging in 2D which is not present in 1D.

A limitation of our calculation is that it is restricted to
high temperatures so that the features at different wave
vectors are rounded. Thus we cannot observe nonana-
lytic behavior, which would be a definitive signal of two
characteristic wave vectors for the t-J model. In this
sense our results may not reflect asymptotic long wave-

length properties, but "perhaps effective behavior et an
intermediate length scale. This question cannot be re-
solved within our current numerical calculation.

In 1D the statistics of the excitations play no role, but
in 2D they are important. Our data give no direct evi-
dence on the statistics of the excitations in 2D, but we
can formulate a hypothesis as to what they might be
[2,14]. If we think of a single electron as being composed
of an elementary spin degree of freedom and an elemen-
tary charge degree of freedom, we would expect one of
them to be fermionic and the other bosonic to give a
fermionic electron [15]. Since n„shows a step at k~ and

S(q) has 2k~ as a characteristic wave vector, we assign
the spin degrees of freedom as fermionic and the charge
degrees of freedom as bosonic, but note that the charge
degrees of freedom are not free bosons, but hard core
bosons (HCB) to enforce the constraint of no double oc-
cupancy. This can be seen in Fig. 1 for n = 0.5 where the
data points near (vr, vr) are already more rounded than
SF at T/J = 0.5. Further evidence for this point of view
can be gained from the work of Long and Zotos [16] and
Sorella, Parola, and Tosatti [17].

We have also estimated the behavior of the HCB N(q)

by a lux phase mean field calculation. In 2D, HCB on
a square lattice with nearest-neighbor hopping can be
exactly mapped into SF by attaching a quantum of mag-
netic flux $0 to each particle [18]. If density fluctuations
are not large, we can replace the attached flux tubes by
a uniform magnetic field, Bo = neo, which will couple to
the orbital motion of the particles. This corresponds to a
SF model with a site dependent phase (the uniform flux
phase). Using this flux phase mean field approximation
we have calculated N(q), with the results at T = 0 shown
in Fig. 2. The global features show a rounded flattening
out of N(q) at 2ks~ and general agreement with SF and
the t-J model. For small g the approximation we are
using gives N(q) oc qz, but by general hydrodynamic ar-
guments we know that for T = 0 if the system has a finite,
nonzero compressibility the q —+ 0 limit should be linear.
The quadratic dependence is due to the "Fermi energy"
of the flux phase sitting in an energy gap [19]. Therefore
the qz dependence is an artifact due to our mean field
approximation and should become linear after including
fluctuations, which we will discuss in a future paper.

More information on the interactions between the spin
and charge degrees of freedom could be obtained by con-
sidering the 2D t Jmode-l with a nonzero spin polariza-
tion. If the spin and charge are coupled we would expect
both S(q) and N(q) to change. However, if the spin and
charge degrees of freedom are truly separate, the char-
acteristic q vector of N(q) should not be affected by a
nonzero spin polarization [20] but S(q) would now have
transverse and longitudinal components with features at
wave vectors that depend on the number of up and down
spins. This has been observed by Ogata, Sugiyama, and
Shiba [21] for the 1D U ~ oo Hubbard model.

Having elementary degrees of freedom at kF and k~~

should have experimental consequences for the copper
oxide planes in HTSC. Neutron scattering experiments
[22] on La2 ~Sr~Cu04 show four incommensurate peaks
centered around (vr, vr) that move with doping. This can
be understood in terms of the nesting properties of the
weak coupling Fermi surface [23] where our results also
put the spin degrees of freedom. The energy integrated
weight of angle resolved photoemission is a direct mea-
sure of n„a dnphotoemission has also been interpreted as
supporting a large Fermi surface [24]. But the transport
measurements [25] are not so easy to understand in this
picture.

Reconciling experiments which show a large electron-
like contour in k space with a density of n carriers, with
transport measurements, which show a much smaller hole
density of 1—n carriers, is one of the most puzzling prob-
lems of the copper oxides [25]. Our results for the 2D tJ-
model show one way this might occur [2,26]. One ex-

pects the transport experiments to couple most strongly
to charge. For 1 —n &( 1, the charge degrees of freedom
at k~ have a small holelike locus in momentum space
centered around (vr, vr) as shown in Fig. 3. With this
the transport measurements are satisfied. At the same
time the spin degrees of freedom give a large, weak cou-

pling Fermi surface also shown in Fig. 3, which is seen in
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neutron scattering and photoemission experiments. We
wish to emphasize that experiments which could probe
N(q) directly may prove to be very interesting for HTSC
materials.

In conclusion, we have studied the equal time correla-
tion functions of the 2D t-J model by high temperature
series expansion methods. We Gnd that the spin and
charge ETCF exhibit signatures of two diferent wave
vectors: the characteristic wave vector for the spins be-
ing k~ and that for charge k~, the Fermi wave vectors
for TB and SF, respectively. In comparison with the re-
sults for 1D this suggests spin-charge separation in this
strongly correlated 2D model.
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[1] For a recent review see T. M. Rice, in High Temperature
Superconductivity, Proceedings of the Thirty-Ninth Scot-
tish Universities Summer School in Physics, edited by D.
P. Tunstall snd W. Bsrford (Adam Hilger, Bristol, 1992).

[2] P. W. Anderson, Science 235, 1196 (1987); 256, 1526
(1992); 258, 672 (1992); in

frontiers

and Borderlines in
Many-Particle Physics, International School of Physics
"Enrico Fermi, " Course CIV, edited by R. A. Broglia
snd J. R. Schrieffer (North-Holland, Amsterdam, 1987);
Phys. Scr. T27, 60 (1989); Phys. Rev. Lett. 64, 1839
(1990); 65, 2306 (1990); 66, 3226 (1988); 67, 2092
(1991); 67, 3844 (1991); 71, 1220 (1993); Phys. Rep.
184, 195 (1989); Phys. Rev. B 42, 2624 (1990); J. Phys.
Chem. Solids 52, 1313 (1991);Prog. Theor. Phys. Suppl.
107, 41 (1992); (to be published); G. Bsskaran, Z. Zou
and P. W. Anderson, Solid State Commun. 63, 973
(1987); P. W. Anderson and Z. Zou, Phys. Rev. Lett.
60, 132 (1988); P. W. Anderson snd Y. Ren, in High
Temperature Superconductivity, edited by K. S. Bedell et
aL (Addison-Wesley, Redwood City, CA, 1990); (to be
published); M. Ogata and P. W. Anderson, Phys. Rev.
Lett. 70, 3087 (1993).

[3] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759
(1988).

[4] R. R. P. Singh and R. L. Glenister, Phys. Rev. B 46,
14313 (1992).

[5] R. R. P. Singh and R. L. Glenister, Phys. Rev. B 46,
11871 (1992).

[6] W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
[7] W. O. Putikka, M. U. Luchini, and T. M. Rice, Phys.

Rev. Lett. 68, 538 (1992); V. J. Emery, S. A. Kivelson,
snd H. Q. Lin, Phys. Rev. Lett. 64, 475 (1991).

[8] W. O. Putikks, M. U. Luchini, and M. Ogata, Phys. Rev.
Lett. 69, 2288 (1992).

[9] W. Stephan and P. Horsch, Phys. Rev. Lett. 66, 2258
(1991).

[10] M. Ogata snd H. Shiba, Phys. Rev. B 41, 2326 (1990).
[11] H. Frshm and V. E. Korepin, Phys. Rev. B 42, 10553

(1990); N. Kawakami snd S.-K. Yang, Phys. Rev. Lett.
65i 2039 (1990).

[12] D. J. Scalapino, E. Loh, Jr., snd J. E. Hirsch, Phys.
Rev. B 34, 8190 (1986); 35, 6694 (1987); N. Bulut, D.
J. Scalapino, and S. R. White, Phys. Rev. B 47, 2742
(1993); D. J. Scalapino (private communication).

[13] H. Yokoysma snd H. Shiba, J. Phys. Soc. Jpn. 59, 3669
(1990).

[14] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys.
Rev. B 35, 8865 (1987).

[15] We do not consider the possibility of anyons, which can-
not be ruled out.

[16] M. W. Long and X. Zotos, Phys. Rev. B 48, 317 (1993).
[17] S. Sorella, A. Parola, and E. Tosatti, in Strongly Corre

Lated Electron Systems II, edited by G. Baskaran et al.
(World Scientific, Singapore, 1991).

[18] E. Fradkin, Phys. Rev. Lett. 63, 322 (1989);Y. R. Wang,
Phys. Rev. B 43, 3786 (1991).

[19] D. Hofstadter, Phys. Rev. B 14, 2239 (1976); Y.
Hasegawa, P. Lederer, T. M. Rice, and P. B.Wiegmann,
Phys. Rev. Lett. 63, 907 (1989).

[20] The feature for N(g) at 2k' will sharpen up at low T as
the spin polarization saturates due to the system going
over to interacting spinless fermions with a sharp Fermi
surface at T = 0. But the characteristic wave vector 2k&"
should not change.

[21] M. Ogata, T. Sugiyama, and H. Shiba, Phys. Rev. B 43,
8401 (1991);see also J. M. P. Carmelo, P. Horsch, D. K.
Campbell, and A. H. Castro Neto, Phys. Rev. B 48, 4200
(1993).

[22] T. E. Mason, G. Aeppli, and H. A. Mook, Phys. Rev.
Lett. 68, 1414 (1992).

[23] P. B. Littlewood, J. Zaanen, G. Aeppli, snd H. Monien,
Phys. Rev. B 48, 487 (1993); Q. Si, Y. Zhs, K. Levin,
and J. P. Lu, Phys. Rev. B 47, 9055 (1993).

[24] C. G. Olson et al. , Phys. Rev. B 42, 381 (1990).
[25] For experimental reviews see High Temperature Super

conductivity, edited by K. S. Bedell et al. (Addison-
Wesley, Redwood City, CA, 1990); Physical Properties
of High Temperature Superconductors, edited by D. M.
Ginsberg (World Scientific, Singapore, 1989—1992), Vols.
1—3.

[26] H. Fukuysma and Y. Hasegawa, Physics (Amsterdam)
148B, 204 (1987); H. Fukuysms, in Superconducting
Materials, edited by S. Nakajima and H. Fukuyama
(Japanese Journal of Applied Physics, Tokyo, 1988), p.
205.

[27] Y. C. Chen and T. K. Lee, Z. Phys. B (to be published).

173


