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Quasiclassical Transport at a van Hove Singularity in Cuprate Superconductors
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The thermopower in cuprate superconductors shows a quasiclassical temperature independence rather
than the T-linear behavior of a Fermi liquid, and scales in an approximately universal manner with
doping. It is shown that standard transport theory at a van Hove singularity in the band structure can
explain both the linear resistivity and these remarkable features of the thermopower in cuprates.

PACS numbers: 74.25.Fy, 74.72.—h

The cuprate superconductors continue to pose a key
problem as to the microscopic origin of their anomalous
properties, which are presumably closely linked to their
high transition temperatures. Recently a remarkable cor-
relation was established between thermopower and transi-
tion temperature: The room temperature thermopower of
five cuprate systems was found [1] to lie on a univer-
sal curve, as a function of doping, with the thermopower
going through zero at the optimum doping associated
with the maximum transition temperature for the mate-
rials. The temperature dependence [2-5] of the typical
cuprate thermopower is also very unusual, in that it does
not follow the T-linear behavior of a Fermi liquid, but is
closer [5] to the T-independent behavior of an extremely
narrow-band conductor with bandwidth less than the tem-
perature [6]. But this narrow-band picture cannot be the
explanation of the T-dependence observed, because the
bandwidth in cuprates is known to be of order 1 eV from
photoemission data [7]. Could a resolution of the paradox
of the temperature-independent thermopower lie in iden-
tifying an appropriate flat feature in the band structure
which duplicates “narrow-band” behavior?

High resolution angle-resolved photoemission data on
high transition temperature 123 [8], 248 [8], and 2212 [9]
materials have identified the presence of a saddle point
(SP) in the band structure energy surface within 100—
200 K of the Fermi energy, the SP being absent in the
low-T, n-type 214 material [10]. Such a SP corresponds
to a logarithmic density of states singularity [van Hove
singularity (VHS)]. In this paper we shall show by con-
sidering transport in the neighborhood of a SP that the
VHS does provide the sharp feature needed to explain
the temperature-independent thermopower, even though
the overall bandwidth is of order 1 eV. As regards the
doping dependence, the thermopower is found to go
through zero when the Fermi level lies at the VHS. The
universal relationship between the thermopower and tran-
sition temperature now receives a natural explanation in
this model; as the Fermi level, controlled by doping, is
swept through the SP, the density of states (DOS) at the
Fermi level goes through a maximum and hence so does
[11-13] T, (e.g., the DOS dependence of the BCS for-
mula). So we expect that the 7, maximum and the ther-

mopower zero correspond to the Fermi level lying at the
SP, and are one and the same. Confidence in this picture
may be gained by noting that it is not in isolation, certain
other anomalous properties, such as the marginal Fermi
liquid (MFL) behavior [14], the specific heat jump [15],
and the isotope shift [12] have also received an explana-
tion in terms of the VHS.

Our approach is founded on standard transport theory,
in terms of which the in-plane thermopower for tetragonal
symmetry is given by [16] S = v/o, where in the
relaxation time approximation
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In (1) v,(k) (@ = x or y) is the phase velocity dex/0kq
(in A = 1 units) on the energy surface ek, 7(g) is the
quasiparticle lifetime, f(e) is the Fermi function, u is
the chemical potential for electrons, and the constant
C = 2¢?/volume.

Two opposite limits for (1) are ordinarily considered.
In the Fermi liquid regime where temperature is low com-
pared to the bandwidth, use of a Sommerfeld expansion in
the integrals (1) gives thermopower proportional to tem-
perature [17]
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where o(g) = CY, v2(k)7(e)8(e — &¢). On the other
hand, in the “classical” limit where T exceeds the elec-
tronic bandwidth, the thermopower is related to the en-
tropy per carrier, giving the formula [6]

Sy = —an[u], 3)
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where, assuming a tight binding model with one orbital
per site, f is the number of particles per site.

The experimental behavior [2—5] seen in many recent
studies of cuprate thermopower is seen in Fig. 1. For
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FIG. 1. Thermopower data of Cooper et al. on YBa,Cu;0;_;

samples quenched from high temperature plotted as a function
of temperature, for various oxygen depletions §.

most of the temperature regime illustrated, the ther-
mopower is nearly temperature independent or even
decreasing with temperature, and this temperature-
independent thermopower is strongly doping dependent
(in the most oxygen-deficient sample, 6§ = 0.3, § is,
however, seen to increase with temperature at low tem-
peratures). It should be mentioned that some data indicate
the presence of a “superposition” on to this behavior of
a weak T-linear component (not equivalent to the Fermi
liquidlike S = T because of the large intercepts), as, for
example, in the g-axis Y-Ba-Cu-O thermopower (first
part of Ref. [18]), but not in the second part of Ref. [18].
The present work is aimed at the Fig. 1 type thermopower
behavior.

The thermopower in Fig. 1 clearly does not follow the
Fermi liquid behavior (2) expected for the experimental
regime, in which the highest temperature, 250 K, is much
less than the electronic bandwidth of order 1 eV. In fact,
the temperature independence of S is like that for the
classical regime (3) which should only be valid when T
greatly exceeds the bandwidth. We shall give a natural
interpretation of this paradox in terms of transport in the
neighborhood of a saddle point.

The proposal is that the saddle point is the dominant
part of the band structure to be considered in the ther-
mopower, as it is in the density of states. So to capture the
essence of the problem, we evaluate the integrals (1) for
the neighborhood of a single SP in the quasi-2D cuprate
band structure. We take for the dispersion around a SP
the model [14]

e = keky . (4)

where k is defined within the region |k,| = k., k. be-
ing a cutoff of order the Brillouin zone (BZ) dimen-
sion. Equation (4) gives a logarithmic density of states
N(g) = (1/2D) In|D/¢| per spin, where D = k? is the half
bandwidth.
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Our calculation of the thermopower is based on the
single relaxation time 7, derived from the self-energy,
whose use is suggested on empirical grounds by the
success of the MFL theory [19] in interpreting a wide
range of cuprate properties (however, resistivity calcula-
tions for electron-electron scattering have also been based
on velocity-weighted [20] and reciprocal lattice vector
weighted [21] relaxation times). In the Born approxima-
tion the expression for 1/7 may be written

1/7(ko) = 47 D> Vi(ks — ko)[1 — fle)][1 ~ flew)]
ki k>
X flek,kp-x) [1 = flew)] !
X 8(er2 = €k0 T Ex1 T Bk —kerke)- (5)

The model for the interaction. V(q) = W/[1 + W[](q)].
is derived from the large-N slave boson model [12],
where [[(q) = (1/D)In|D/e,| is the polarizability in the
charge channel, and W defines the large-¢ cutoff. It has
been analytically demonstrated [14] in the special case
of constant V, u = 0, and T = 0 that at low g, 7(k)
is a universal function of e only. with the marginal
Fermi liquid behavior [14,19], 1/7(e) * &. Numerically.
the k sums in (5) were done by implementing a four-
dimensional extension of the standard tetrahedron method
for calculating band structure DOS, keeping only vectors
k inside the cutoff k.. Calculations are done at constant
particle number.

As a check on our procedure we calculate in Fig. 2 the
temperature dependence of the resistivity p(7) = /o (T).
According to MFL phenomenology [19], the linearity of
scattering rate with energy, 1/7(e) = &, leads to the linear
resistivity p(T) <« T. For the case u = 0 which does
satisfy [14] the linearity of 1/7 in &, Fig. 2 shows that
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FIG. 2. Theoretical curves of resistivity vs temperature from
Eq. (1) for o, evaluating 7(k) in Born approximation [see
Eq. (5)], with D = 10000 K, W = 0.85D. Curves labeled by
different values of zero-T chemical potential u, (see legend),
top curve uy = 0, next to top curve uy = 0.02D, etc. Insert,
DOS for model of Eq. (4), illustrating partial filling up to
chemical potential p.
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a linear resistivity is indeed obtained. When u is shifted
away from the maximal T, value u = 0, by say u > 2T,
p(T) exhibits a crossover to T? behavior, in accord with
various data [22] on, for example, the underdoped n-type
214, 123 and Hg 1201 materials, and the overdoped
T1 2201 material.

The temperature dependence of the thermopower is il-
lustrated in Fig. 3. Because of cancellations in Eq. (1) the
thermopower is difficult to calculate accurately [16], but
despite small random errors at the lowest temperatures,
which could not be eliminated without prohibitively ex-
pensive calculations, the implications of the results in
Fig. 3 are quite clear. The temperature behavior clearly
resembles that in the experimental data (Fig. 1) very
closely; the extended T-independent region in the Fig. 1
curves is well reproduced by the theory, and the curves
for larger u indeed manifest the significant T-linear re-
gion at low temperatures shown by the 6 = 0.30 experi-
mental sample.

A comparison of the doping dependence of the ther-
mopower with the experimental data is presented in
Fig. 4, which is based on the universal thermopower plot
[1] of Obertelli, Cooper, and Tallon (OCT). The OCT
curve presents thermopower at 290 K either as (a) a plot
directly in terms of doping per planar Cu derived from
bond valence sums [23] (this method directly measures
planar doping in the 123 material where the presence
of chain holes complicates direct measurement) or (b) in
terms of the ratio T./T™*, where T/"* is the maximum
transition temperature in a given material, which is linked
to doping via an empirical relationship [23]. In this plot
five materials are found to lie on the same universal curve,
as is clear from Fig. 4. We present the results of our ther-
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FIG. 3. Theoretical curves of thermopower vs temperature
from Eq. (1), evaluating 7(k) from Eq. (5). Curves are labeled
by the value of w, in units of D; D = 10000 K, W = 0.85D.

Tc/Tcde
2 6 8.9 1 98 6 2
lo T 7T T T T T
20 . 4 2201 Tl
o 1212 Tl
BCS = 2212 Bi
< 10 L/ o ¢ 123Y
g y ® + 22237l
> +"
3 + i -
v e
at N
-10 } ‘ A
AA
1 1
-1 -.05 0 05 1
X = xopl

FIG. 4. Data points, universal thermopower plot [1] of
Obertelli, Cooper, and Tallon (materials with hole con-
centration below 0.1 omitted), illustrating thermopower at
290 K plotted vs doping for materials illustrated in legend.
123 and 2223 materials plotted vs doping derived from
bond valence sums (lower scale), remaining materials plot-
ted in terms of their 7.’s (upper scale), using relationship
T./T™* =1 — 82.6(x — xop)?, With xop = 0.16.  Dashed
curve, theoretical thermopower at 280 K plotted vs doping
relative to half filling of VHS (lower scale), assuming VHS
occupies 50% of BZ. Full curve, plot of same quantity vs T,
(upper scale), calculated from BCS equation [12] with param-
eters wg = 700 K, D = 10000 K, electron-phonon coupling
V,/2D = 0.116, u* = 0, T/ = 939 K.

mopower calculation on the OCT plot in two ways. First,
we identify the optimum hole concentration used by OCT,
corresponding to the 7, maximum, xop = 0.16, with the
point # = 0 in our model, when the relationship between
w and doping is obtainable by integrating the logarithmic
DOS. In doing this one must note that the VHS only oc-
cupies a fraction of the BZ (in the specific heat work of
Ref. [15] the best fit of this fraction to the data was 0.6);
with the obvious ab initio choice of this fraction as 0.5,
the dashed curve in Fig. 4 is obtained. Alternatively, we
may plot thermopower versus 7. /T™*, using BCS theory
to calculate T, yielding the full curve in Fig. 4.

The calculations are seen (Fig. 4) to be in agreement
with, though somewhat underestimating, the data on the
overdoped side of the VHS, but on the underdoped side,
for dopings less than about 0.02 below optimum, the
thermopower rapidly takes off exponentionally; in this
heavily underdoped region it may be appropriate, due to
the influence of the metal-insulator transition, to start from
a quite different theoretical basis from that used here, in
which the Luttinger Fermi surface no longer provides the
correct underlying description of the ground state and low
lying excitations. Note that, unlike an earlier approach
[24] to the thermopower, the present calculation is not
based on an empirical model for the mean free path, and
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also does not fix the thermopower zero at the half filling
(zero doping) point of the band [24] where the cuprates
are insulating—a constraint incompatible with the OCT
correlation which places the thermopower zero at the 7,
maximum.

Another physical process which also leads to MFL be-
havior is nesting scattering [25]. It is interesting to specu-
late whether this mechanism could also reproduce the
temperature-independent thermopower, but it is unclear
how the universal OCT doping dependence could emerge
from the nesting picture.

In conclusion, we have put forward the concept that
the anomalous phase space for scattering of quasiparticles
whose energy lies near a saddle point in the band struc-
ture can explain, on the one hand, the linear resistivity
and its crossover to parabolic behavior, and, on the other
hand, the sign, temperature dependence, doping depen-
dence, and approximate magnitude of the thermopower
in cuprates. The thermopower is a measure of scattering
asymmetry about the Fermi level, and its magnitude is
sensitive to the scattering potential and how it is modeled.
The thermopower is also very sensitive [18] to splitting
of the saddle points in materials with orthorhombic sym-
metry, in which the thermopower can also be explained
within the present framework [26].
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