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Effect of Hydrogen Bonds on the Thermodynamic Behavior of Liquid Water
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We propose an extension of the van der Waals equation which is designed to incorporate, in an
approximate fashion, the effects of the network of hydrogen bonds that exist in liquid water. The
resulting model qualitatively predicts the unique thermodynamic properties of water, including those of
the deeply supercooled states. It also reconciles two proposals for the phase behavior of supercooled and
stretched water and provides a thermodynamic origin for the observed polymorphism of the amorphous

solid form of water.

PACS numbers: 61.25.Em, 64.30.+t

Water has long attracted attention for its unusual ther-
modynamic properties, of which the best known is the
density maximum at 4°C [1]. In addition, the liquid ex-
hibits minima in the isothermal compressibility Kr and
isobaric specific heat Cp as a function of temperature
T. More extreme anomalies are seen under supercooled
conditions, where the variation of thermodynamic prop-
erties is sufficiently strong to suggest the existence of
thermodynamic singularities [2]. Though agreement has
not been reached on the interpretation of such behavior,
it is commonly acknowledged that the hydrogen bond
(HB) interaction between water molecules plays a cen-
tral role. In water, HBs lead at low T to the formation
of an open, approximately four—coordinated structure, in
which internal energy, entropy, and density decrease with
decreasing 7.

Considerable effort has been expended to develop
an accurate description of the thermodynamic properties
of liquid water. In particular, insight into the relation
between HBs and bulk thermodynamic properties has
been obtained through the study of lattice-gas models
designed to include the microscopic effect of the special
local geometry of HBs [3]. These models have revealed
a rich variety of thermodynamic behavior, many aspects
of which are waterlike. Such model studies show that
including HBs can introduce complex changes in the
thermodynamic properties. In certain lattice-gas models,
singularities indeed arise in the supercooled region of the
phase diagram.

In this Letter, we develop a simple model for the
free energy of liquid water which superimposes the
properties of an open network of HBs on those of a
simple liquid described by the van der Waals theory.
We find that this model is able to (1) qualitatively
reproduce the known thermodynamic behavior of water,
(2) consolidate proposals for the behavior of supercooled
water by showing that they may be different realizations
of a single behavior, and (3) describe how the predictions
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of lattice-gas models are relevant to understanding liquid
and amorphous solid water.

We first choose a Helmholtz free energy Ayp describ-
ing the behavior of the HBs. We then add Ayp to the van
der Waals free energy Ayvpw [4], yielding a total free en-
ergy A,

A = Aypw + 2Aps, (1)
where the factor of 2 accounts for the fact there are two
moles of HBs for every mole of molecules. The pressure
P can be found from P = —(3A/aV)r.

We develop a form for Ayp by modeling in turn
the expected properties of HBs as a function of T and
molar volume V. To model the thermal behavior of HBs,
we adopt a number of previously exploited simplifying
approximations [5]. First, we partition the range of HB
energies into two groups, “weakly bonded” (for which we
take the bond energy e to be 0) and “strongly bonded”
(for which € = eyp < 0).

We further note that in water the HBs are “‘geometri-
cally selective” in that strongly bonded pairs of molecules
must have a relatively specific mutual orientation and
separation. An environment of strong HBs around a
molecule can be realized only when adjacent molecules
dispose themselves in an open tetrahedral structure simi-
lar to that found in ice I,. To build in this geometric
selectivity, we adopt the approach of Sastry, Sciortino,
and Stanley [3] that there are >>1 configurations of a
weak bond, all having € = 0, and only a single config-
uration in which the HB is strong with € = eyg. Thus
the thermal behavior of the HBs is represented by in-
dependent (Q) + 1)-state systems, each described by a
partition function Z =  + exp(—enp/RT). Hence, the
Helmholtz free energy per mole of bonds is

AHB = —RT ln[Q + CXp(“"€HB/RT)]. (2)

Next we modify Ayp to include an appropriate V
dependence. A principal assumption of the present work,
which leads from a microscopic picture of HBs to bulk
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thermodynamic properties, is that strong HBs are most
likely to occur when the bulk molar volume V has the
value Vyg, which is consistent with each molecule having
the optimal local molecular volume for the formation
of strong HBs to its neighbors. Hence, Eq. (2) best
models the thermodynamic contribution of the HBs only
at V = Vyg. For V < Vygg and V > Vyg many HBs
continue to occur within local molecular volumes that
allow the formation of strong bonds, and thus continue
to be described by Eq.(2). However, for V # Vyg,
such HBs are only a fraction f of the total, since
V is no longer consistent with the possibility that all
HBs occur in the optimal local molecular volume. The
remaining fraction 1 — f of HBs occur in unfavorable
local volumes and thus do not have the potential to form
strong HBs. We model each of these remaining HBs also
as an independent () + 1)-state system, but impose the
condition that eyg = O to indicate that all (1 + 1) states
are incompatible with the formation of a strong bond. The
Helmbholtz free energy describing the HBs thus becomes a
sum of two terms:

Agp = — fRT In[Q + exp(—eyp/RT)]
— (1 - /ARTIn(Q + 1). 3)
An appropriate form for f is
f =exp{~[(V — Vup)/oT}. 4

Here the parameter o characterizes the width of the region
of V over which a significant fraction of HBs can be
described by Eq. (2). This form introduces a minimum
of new parameters while remaining consistent with our
assumption that strong bonds have the potential to appear
in significant numbers only within a specific interval
centered on V = Vyg. Figure 1 illustrates the behavior of
Eq. (1) using Eqgs. (3) and (4), and shows both the internal
energy U and the pressure derived from it.

The inclusion in the model of an optimum volume for
hydrogen bonding introduces a second minimum in the
liquid free energy at sufficiently low T. Although the
model can be conceptually related to two-state models
of water, the two states in our model are global states
of the system, not distinct species of isolated water
molecules. Many different local molecular configurations
are consistent with each of the two free energy minima.

Equation (1) qualitatively predicts known thermody-
namic properties of water [6]. Consistent with exper-
imental observation, the T of the density maximum
decreases with increasing P, as does the curvature about
the maximum [Fig. 2(a)]. The anomalous behavior of
both response functions Ky and Cp [Figs. 2(b) and 2(c)]
is reproduced by the model, as is the known suppression
of anomalous water behavior as P increases [7].

We stress that Eq. (1) is qualitative. Its numerical
accuracy is necessarily lower than that of known empirical
equations of state [8]. Some of the parameters (a, b, and
Vug) are fixed to coincide with experimental data. We
find that waterlike behavior is obtained when the remaining
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FIG. 1. Plots of thermodynamic behavior of Eq. (1) for

eng = 0 (dashed) and eyp = —22 kJ/mol (solid). (a) Plot of
U as a function of T for constant V = Vyg. Also shown are
plots of (b) U, (c) A, and (d) P as a function of V at constant
T; T = 260 K in (b), while 7 = 220 K in (c) and (d). Other
parameter values are given in [6]. Note the implications for
P shown in (d): the HB term makes an additional (volume
dependent) contribution to the pressure around Vyg which is the
derivative of a Gaussian. The result at low T is the appearance
of an new “loop” on the low V side of the P isotherm, dividing
the liquid into two distinct phases. Note that each extremum
of an isotherm of P identifies a spinodal.

parameters (o, egp, and () have values that are of the
order of experimental values; better correspondence is
precluded by the simple nature of the model [6]. It is this
simplicity which makes the model useful for understanding
the qualitative behavior of the phase diagram of liquid
water (especially in the supercooled region) as we now
show.

Figure 3 shows phase diagrams generated by Eq. (1),
including the extensions of the fluid behavior into the su-
percooled region at low 7. Two distinct proposals have
been made for the existence of a thermodynamic sin-
gularity in this region. In one, experimental data and
thermodynamic reasoning are used to argue that a limit
of metastability (“spinodal”) exists in the supercooled
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FIG. 2. [Isobars of (a) density p, (b) Kr, and (c) Cp obtained

from Eq. (1) using the same parameters as for Figs. 3(a) and
3(b) [6]. Each plot shows isobars at P = 0 (solid), P =
200 MPa (dashed), and P = 400 MPa (dot-dashed).
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region, forming a line of thermodynamic singularities,
which accounts for the anomalous behavior of the stable
liquid [9]. The other, prompted by the results of computer
simulations and the observed polymorphism of amorphous
solid water, conjectures that a line of liquid-liquid phase
transitions ending in a critical point exists in the super-
cooled region of the phase diagram and is the origin of
the observed thermodynamic anomalies [10]. The present
model reproduces both behaviors, depending on the pa-
rameter values chosen. The model shows how it is possi-
ble for the phase diagram to continuously transform from
one behavior to the other retaining the unique properties
of water.

For values of |eyp| greater than a critical threshold
le%s] = 16.5 kJ/mol, the effect of the Ayg term in Eq. (1)
is to “split” the normal liquid-gas coexistence curve by
imposing thermodynamic stability in a region of states
(centered on V = Vyg) which is unstable when eyp =

0 [Figs. 3(a) and 3(b)]. As a result, two coexistence
curves [Fig. 3(a)] occur—each terminating at a critical
point, denoted C and C’. Below T¢, the liquid state
phase separates into distinct low-density and high-density
phases. The qualitative thermodynamic mechanism by
which liquid-liquid phase separation arises from Eq. (1)
is given in Fig. 1. The corresponding phase diagram in
the P-T plane [Fig. 3(b)] is topologically the same as that
proposed in [10].

As |eyp| decreases, the stabilizing effect of the Ay
term near V = Vyp sets in only at lower T. For suf-
ficiently small |eyg|, the liquid-liquid critical point C’
merges with the high-density spinodal of the liquid-gas
coexistence curve. For |epg| < lehsl [Fig. 3(c)], the
low-density liquid phase is completely enclosed within
the region of states that would otherwise be unstable.
The stable interval between the two separate coexistence
curves in Fig. 3(a) has become an isolated “pocket” of
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FIG. 3. Coexistence curves and P-T phase diagrams generated by Eq. (1) for eyp = —22 kJ/mol (top panels) and eunp =

—14 kJ/mol (bottom panels). Other parameter values are given in [6]. Coexistence curves (solid), spinodal lines (dashed and
dot-dashed) and lines of density maxima (fine dotted line) are shown. Coexistence curves separate.stable a}nd metastable states,
while spinodal lines separate metastable and unstable states. For clarity, only those features appearing at higher T than the dot-

dashed spinodal line in (c) are shown in (d).
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stability in Fig. 3(c). The corresponding P-T phase di-
agram [Fig. 3(d)] exhibits the key features of the pro-
posal of [9] for the behavior of metastable water. Hence,
the model shows that this view of the behavior of su-
percooled water and that of [10] may be fundamentally
related.

For each of the values of ey used in Fig. 3, there
are two thermodynamically distinct phases of deeply su-
percooled liquid water, a prediction which provides in-
sight into the thermodynamic status of the amorphous
ice phases [11]. We might associate low-density amor-
phous ice with the glass formed from the liquid at low
T in the stabilized region near V = Vyg. High-density
amorphous ice would then correspond to the glass state of
the liquid at the higher densities described by the model.
The present treatment predicts that these two amorphous
solids are thermodynamically distinct due to the region of
instability that lies between them at low 7. This view
is consistent with the experimental observation that the
transformation (both temperature and pressure induced) of
one amorphous solid to the other is sufficiently abrupt to
be considered “apparently first order” [12], as well as with
a recent analysis of dynamic data [13].

The connection between liquid water and low-density
amorphous ice at ambient P has long been debated.
The experimental synthesis of low-density amorphous
ice by hyperquenching has led to the conclusion that
a continuous thermodynamic path connects the liquid
and low-density amorphous ice phases [14]. The present
model shows that this is indeed the case if |eyp| > |eXs].
For |eus| < |efgl, the model predicts a first order liquid-
liquid transition at ambient P [see Fig. 3(d)], which
separates ordinary water from the distinct low-density
phase.

It is possible that other structured liquids may display
analogous anomalies in their supercooled regions—e.g.,
the observed first order melting of amorphous Si (also a
substance with an open tetrahedral network structure) to
a supercooled metallic liquid [15] may be a manifestation
of a liquid-liquid phase transition similar to that described
here.
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