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Computer Simulation of Transport Driven Current in Tokamaks
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We have investigated transport driven current in tokamaks via 2 + 1/2 dimensional, electromagnetic,
particle-in-cell simulations. These have demonstrated a steady increase of toroidal current in centrally
fueled plasmas. Neoclassical theory predicts that the bootstrap current vanishes at large aspect ratio,
but we see equal or greater current growth in straight cylindrical plasmas. These results indicate that

a centrally fueled and heated tokamak may sustain its toroidal current, even without the "seed current"
which the neoclassical bootstrap theory requires.

PACS numbers: 52.55.Fa, 52.25.Fi

Tokamak fusion plasmas will generate large self-driven

current, and this will have a great impact on steady-
state reactor designs. To gain a deeper understanding of
such current drive mechanisms, we have performed fully
electromagnetic (EM), particle-in-cell (PIC) computer
simulations which demonstrate steadily rising toroidal
current not only at typical aspect ratios of four, but
also in straight cylinders (infinite aspect ratio). This
transport driven current exceeds that predicted by the
neoclassical bootstrap current theory [I—3], but follows
from the conservation of the toroidal or z component of
the particles' canonical momentum.

The "2 + 1/2 dimensional" PIC code computes

(x, y, v„, v~, v, ) (from the Lorentz force) for all electrons
and ions and calculates the fully self-consistent EM
fields within rectangular, perfectly conducting bound-

aries. The z coordinate is ignorable due to the assumed

symmetry and corresponds to the toroidal coordinate.
The x coordinate corresponds to the major radius with

a constant offset. Although there are no gradients in

the z direction, the particles flow in that direction and

give rise to a current density (1,) which forms the

self-consistently computed, time varying, poloidal field.
The field solver geometry is Cartesian; however, in the
"quasitoroidal" runs, we introduce an externally applied

B& = B pxo/(x + xo). This field causes a VB drift of the

particles, which is an important toroidal effect.
The plasma is initialized with a parabolic profile [n; =

n, = no(1 —r2/a2)], a uniform temperature profile (T; =
T, = To), and a net toroidal current. The magnitude of the

external, uniform, y-directed, vertical field (B,) is chosen

so that the I, X B„ force counterbalances the plasma's
tendency to drift in the x direction due to VB, . After a
brief time at the beginning of the run, the plasma relaxes
into equilibrium with J x 8 = Vp and V . 1 = 0.

When particles reach a circular "limiter" near the edge
of the grid, they are removed from the system, and

their positions, velocities, etc., are saved for diagnostic
purposes. The square, conducting walls deform the outer
flux surfaces and constant potential surfaces, so that

they are slightly noncircular, and, therefore, not exactly

parallel to the limiter. These deformations cause greater
particle loss at the "corners, " where the flux and potential
surfaces cross the limiter, than at points where the limiter,
conducting wall, potential surfaces, and flux surfaces are

parallel.
New ion-electron pairs are injected into the plasma

to sustain the density. These reinjected particles have a
temperature of To, but, unlike the initial particles, have no
net average drift velocity or current in the z direction. The
spatial profile of this refueling may be a hollow annulus,

to simulate edge fueling due to gas puffing or particle
recycling from the walls, or may be centrally peaked, to
approximate neutral beam or pellet fueling.

Although particles are always injected as net neutral

pairs, the ions initially escape more rapidly than the

electrons due to their larger orbits. This gives rise to a
net charge density in the plasma and a radial electric field

at the plasma's edge, as can be seen in Fig. 1. The code
recomputes the fields every time step, but the magnitude

of the radial F. field at the edge is established very early

in the run, and only the detailed shape of the internal

potential contours continues to vary.
In these simulations, E X B drifts are the dominant

transport mechanism. These drifts are parallel to contours

of constant electrostatic potential which typically are as
shown in Fig. 1. The particles execute trajectories which,
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FIG. 1. Contours of constant electrostatic potential.
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in the quasitoroidal runs, can resemble arcs of banana

orbits, but the Auctuating E X B drifts prevent such orbits

from persisting for as long as a bounce time.
Figure 2 shows the normalized current (IJ.DI /aB ) vs

normalized time (cu„t) for three different simulations:

an edge-fueled quasitorus, a centrally fueled quasitorus

(both with aspect ratios of four), and a centrally fueled

straight cylinder. All runs have 2JJ.op,„/B2 = 4% and

2JJ.op,„/Bs(a) = 4 at t = 0. Initially the quasitoroidal

plasmas are not exactly in equilibrium and, therefore,
lose particles and current faster than the straight cylinder.
Later, the centrally fueled runs with and without VB, have
similar rates of particle loss and current rise; therefore,
banana orbits are not crucial to the results of these
simulations.

What is critical is the position of the particle fueling.
The edge-fueled case shows some current rise, but at
a much lower rate than the centrally fueled plasmas,
despite the fact that the particle loss and fueling rates
are an order of magnitude greater. The total number of
particles removed at the limiter during the run divided

by the total number of particles in the plasma is 12.5%
for the centrally fueled straight cylinder, 20.8% for the

centrally fueled quasitorus, and 326% for the edge-fueled
quasitorus.

In this PIC code, all quantities are independent of z;
therefore, each particle conserves the z component of its
canonical momentum:

pJQ mJvJz + ejA, (ri, r) (1)
Here the subscript j denotes the jth particle, and the ini-

tial value of the canonical momentum is established at the
time when the jth particle is injected. A collision sub-
routine has been added which models Coulomb scatter-

ing and breaks this pJ, conservation in a controlled way.
When the collisions are "turned on," even with v„/cup,
set to a value orders of magnitude greater than is typical
of tokamaks, the current drive still occurs.

This code requires the use of small time steps (on the
order of the electron cyclotron period) and, therefore,
large amounts of computer time. We, therefore, ran
the simulations with greatly increased electron mass
[= (ion mass)/9] and rather small system sizes (diameter
of 85 ion Larrnor radii). Because it is not practical to run

such a simulation for times on the order of the plasma's

resistive time scale, we primarily focus on the results of
collisionless simulations in this paper.

Given the complicated shape of the E X B drifts, it may

not be obvious that p,, is actually conserved, but Figs. 3
and 4 show that it is. The "birth" velocity distribution fi,
is the distribution of the initial velocities of those particles
which have been lost to the limiter. The function f, is
the calculated distribution function of v, f;„,i + AA, eJ/mJ,
which would be identical to fb if the particles canonical
momenta were conserved. For the ions, fb and f, are

barely distinguishable. The electrons' higher velocities
make them slightly collisional (due to discrete particle and

numerical effects), and so their f, curve is slightly shifted

from fq
The shape of fi, indicates that "costrearning" particles,

which have e, v,, of the same sign as J,0, are better
confined than "counterstreaming" particles, whose eJvJ,
have the opposite sign of J,o. As stated above, reinjected
particles are given random velocities with a Maxwellian
distribution and zero average; however, when the plasma
is initially loaded, the particles are given an average drift
such that the plasma has current in the +z direction.
The z electron drift velocity is negative; the z ion drift

velocity is positive and smaller in magnitude by a factor
of I,/m;. Thus, the plasma initially has current but no
net z kinematic momentum.

If the particles which are lost at the limiter were
randomly selected from the initial particle distributions,
then fb and f, should have Maxwellian shapes and

small shifts in the positive direction for ions and in

the negative direction for electrons. Figures 3 and 4
clearly show that the shifts are of greater magnitudes
and in opposite directions. The counterstreaming particles
reach the limiter in much greater numbers than the better
confined costreaming particles. Particles opposing the net
current are lost from the center of the plasma more readily
than those enhancing it, and this drives net current even at
the magnetic axis, in contrast to the neoclassical bootstrap
theory.

These simulation results of current drive and preferential
loss of counterstreaming particles emerge from a very
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FIG. 2. Current versus time.
F|G. 3. Distribution of birth velocities of ions lost to the
limiter.
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FIG. 4. Distribution of birth velocities of electrons lost to the
limiter.

long computation involving hundreds of thousands of
dynamical variables, and yet the main results can be
understood in terms of a surprisingly simple conceptual
model based on conservation of energy and pj, and an
assumed current profile. With these assumptions one can
determine bounds on the radial motion of the particles
without knowing the details of the potential profile of fiow
vortices.

A uniform current density J,o over a cylinder of radius
a generates a vector potential A, = poJ,o(a2 —r )/4. If
pJ, is conserved, then each particle's vj, varies with radial
position:

5v, = e, po J,oh(r, )/4m, . (2)

If a particle moves outward [A(r, ) ) 0], then its incre-
mental contribution to the plasma current (e, Av, , ) has the
same sign as J,o, therefore, radial transport of both ions
and electrons enhances the existing current.

Since it is energetically impossible for
~ v, , ~

to increase
arbitrarily for all particles, there is a significant constraint
on the particle motion. We denote the jth particle's initial
velocity as vjo, and v, o =

~ v, o ~. If the particle conserves

kinetic energy (as it would tend to while E & B is drifting
along a surface of constant potential) then —vjo ~ U,, ~
v, o. Equation (2) relates this range of accessible velocities
to the corresponding range of accessible radial positions:

rJmIQ rJ rJmQ+y Where

(3)

8, ~ 0 and vjo parallel to j (or uj.. o = v,o) cannot move
outward from its initial position, and likewise for a
particle with Bj ( 0 and ujo antiparallel to z (or vj-o =
—vjo). Both such particles carry current in the same
direction as J,o.

If the direction of the particles initial velocities are
reversed in these examples, then the particles have the
largest possible rj,„ for that initial position and en-

ergy. These are the limiting cases of a general trend
that costreaming particles are better confined than coun-
terstreaming particles, or that current filaments attract if
they carry currents in the same direction and repel if they
carry opposing currents. This applies to banana orbiting
particles, but also to particles in a straight cylinder, in

which banana orbits do not exist.
The differential loss rate of counterstreaming and

costreaming particles constitutes an additional current
drive mechanism. Particles opposing the net current are
lost from the center of the plasma more rapidly than

those enhancing it, resulting in net current drive, which
we compute as follows: We assume that each particle
is equally likely to be at any radial position within its

allowed range of motion. The jth particle contributes a
current density of

eJ VJ-
2 2 .'rr(rjmax rj min)~

for rJ;„» r» rJ,.„, and Jj 0 for r outside this

range. The number of identical particles per unit length
in the z direction is A '.

Equation (2) combined with the particle s initial condi-
tions specify vj, as a function of r, . Here we consider
only the current generated at r = 0 by particles born at
r = 0. In this case, r, ;„=0, and Eq. (4) specifies r,

Averaging Jj, over a Maxwellian initial velocity distri-
bution for species s yields the incremental current density
for that species at r = 0 due to fueling:

AJ, . = 0.2p, oJ,oe m 'S,kt,

~here S,ht denotes the number of particles per unit

length injected at r = 0 during a time interval At. This
mechanism acting on both electrons and ions produces an

effective electric field:

r,',„=r,'o —8,'v, .o/v, o + ~B,'(, (4)
Enff 0 2poe (Z /m; + Z/m, )a J-oS;

= 4mj vjo/ej po J;o (5)

If Eq. (4) gives r,',„&a, then the particle hits the
limiter, is neutralized, and contributes no current. If
Eq. (3) gives r, ;„(0, then, of course, the particle's

rj min

Equations (3)—(5) show that particles in different
regions of velocity space diffuse (in position space) at

very different rates. First, Eq. (5) shows that a particle's
collisionless step length (and, therefore, its diffusion
coefficient, in the collisional case) increases with mass
and energy. Second, Eq. (4) shows that a particle with

where e; = eZ. Extending this calculation to r & 0 and

including more realistic fueling profiles is quite difficult

analytically, but can readily be done numerically. The
above argument does show that fueling on-axis drives

current on-axis.
The analytical calculation is complicated by the fact

that Eq. (3) becomes invalid if it gives rj,„~0, in which

ease the particle's r, ;„actually equals zero. A similar

problem arises near the edge of the plasma, where Eq. (4)
can give rJ,„)a2, in which case the particle leaves

the system. For regions of the plasma 0 « r « a one
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can make a simple estimate of the particle transport and

current drive.
The random walk step length of the jth particle (be-

tween collisions) is IJ. r~ = (rj,„—rj;„)/2. If rj
Ar, then Eqs. (3) and (4) give

~rj = l~l I/2rj min ~ (9)

Averaging 6, over a Maxwellian velocity distribution for
all particles of species s yields

EzJ 8T, Bn,
mBg Br

(12)

8, =8 2 m m, T, e,ppjzp 10

Combining the average step length with the decor-
relation time of p,, yields the diffusion coefficient for
the particles. The fact that experiments do not exhibit
anomalously large parallel resistivity suggests that turbu-

lence effects are less important than collisions in defin-

ing the decorrelation time of the canonical momentum of
the particles. Assuming that the decorrelation time for
electron canonical momentum is the electron-ion collision
time (r„= m, /e2n, g, where 71 is the classical resistiv-

ity) yields a diffusion coefficient for electrons:

D, = 4g &2I pn, T, )l

4r fe( 1rpp ( Be

where Be = p, pI,p r/2
As in neoclassical theory, one may assume that the

electron diffusion coefficient determines the ambipolar
transport. For comparison, the banana diffusion coeffi-
cient [1] is Dt, = D,Q2r/Rp. One can estimate the cur-
rent driven by this particle transport using Ohm's law:
gJ, = E, + v„Be and Fick's law nv„= DBn/Br:—

Equation (12) resembles the neoclassical bootstrap cur-

rent; however, Eqs. (11)and (12) and the neoclassical the-

ory are not valid near the magnetic axis, where Ob

Because the standard theory is not valid at the magnetic
axis, any predictions about current drive (or an absence
thereof) near the magnetic axis cannot be made using that

theory; however, our simulation does treat the region near

the axis correctly.
In summary, the neoclassical bootstrap current theory

[2,3] asserts that a 100% bootstrapped tokamak is not

achievable, but this prediction is inconsistent with both
experimental data [4,5] and our simulations. Externally
driven seed current appears to be unnecessary because of
additional current drive at r = 0 due to the preferential
loss of particles carrying current counter to the net plasma
current.
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