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Scars in Groups of Eigenstates in a Classically Chaotic System
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A general method to construct wave functions highly localized on a given periodic orbit, using the
information contained in the short term quantum dynamics of the system, is presented. The relationship
with the Husimi's quasiprobability distribution in phase space is also discussed.
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In the past few years considerable attention has been
paid to study the connection between classical and quan-
tum dynamics in situations where classical chaos domi-
nates [1]. In a series of papers, Gutzwiller constructed a
semiclassical version of the quantum mechanical Green's
function in terms of classical orbits, and applied it to the
calculation of eigenvalues of classically chaotic systems
[2]. Berry [3] and Voros [4], based on the theorem of
Schnirelman [5], formulated the conjecture that the quan-
tum expectation value of a smooth operator is the classical
microcanonical average, for almost all states. Accord-
ingly, the high lying wave functions would be the pro-
jection of the classical microcanonical distribution on the
coordinate space. The numerical studies and theoretical
arguments of McDonald and Kaufman [6] and Heller [7]
on the Bunimovich stadium have proved this conjecture to
be incomplete, since some eigenfunctions appear strongly
"scarred" by certain unstable periodic orbits (PO). This
localization effect on individual eigenstates can also be
studied by considering quasiprobability density distribu-
tions in phase space, such a Wigner or Husimi s distri-
butions [8,9]. However, no general conditions or criteria
have been given, so far, for the occurrence of this effect.

Using Gutzwiller's summation formulas, Bogolmony
[10] obtained an expression for the smoothed quantum
probability density over small intervals in energy and
in space. These averaged probabilities over groups of
eigenstates have, superimposed to the microcanonical
distribution term, contributions localized around closed
classical paths. It is worth noting that, due to the
smoothing over an energy interval, contributions arising
from long orbits are eliminated.

Another interesting contribution is that of Nishioka,
Hansen, and Mottelson [11]that for spherical mean field
potentials for electrons in metal clusters, found a relation
between the oscillations of the low resolution version of
the quantum density of states and classical POs and its
interference.

Heller's work has also introduced a quantum dynamical
viewpoint into the picture we have described above
[12]. The relationship existing between spectra and

wave-packet dynamics has helped to understand the
localization phenomena [13]and permitted the connection
with experiments [12,14]. Recently, Tomsovic and Heller
have shown that some quantum eigenstates of chaotic
systems can be constructed semiclassically [15].

In the spirit of Bogolmony's theory, we present in
this Letter a general method to construct a sequence
of nonstationary wave functions highly localized on a
given PO, each one corresponding to an increasing
degree of excitation in the mode represented by the
PO. The new localized wave functions are obtained as
linear combination of eigenfunctions of the system under
consideration, where the coefficients and energy interval
are determined solely from the short term quantum
dynamics (wave-packet propagation) of the system. This
represents a numerical way of extracting the information
concerning a particular PO contained in a group of
eigenstates. (Natural units, i.e., fi = 1, m = 1, will be
used throughout. )

The results that we are presenting in this work corre-
spond to the quartic oscillator

H= —P, +P + —xy + —(x +y) (1)

with y = 0.01. The classical motion of this system for
y 0 was thought for a long time to be completely
chaotic, i.e., all periodic orbits to be unstable. However,
Dahlquist and Russberg found the existence of a family of
stable periodic orbits [16]. The Hamiltonian (1) exhibits
mechanical similarity: the properties of the classical
motion at any energy can be determined by scaling
from E = 1; this avoids the complications derived from
the dependence of phase space structure on the energy.
A very interesting review on the quartic potential has
recently appeared in the literature [17].

Several theoretical studies of system (1), which are
relevant to the points addressed in this Letter, have
been presented in the literature. Waterland et al. [9]
constructed quantum surfaces of section (QSOS) by
calculating the squared overlap of the eigenfunctions with
a harmonic oscillator coherent state (Husimi distribution),
centered at a point on the classical surface of section.
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They found that some states are scarred by short PO's
and their QSOS affected by the corresponding stable
and unstable manifolds. Eckhardt, Hose, and Pollak [18]
presented a comprehensive study of the eigenfunctions
of system (1) showing that many of them were scarred

by PO's. They also established the importance of the
adiabatic stability of the PO for the localization of some
specific states, i.e., those which localize along both axis.

The quantum eigenstates of the quartic oscillator (1)
can be classified according to the C4 symmetry group,
which has five irreducible representations: A(, BI, A2, 82,
and E. The corresponding eigenvalues and eigenfunctions
have been calculated using a basis set of symmetry
adapted two-dimensional harmonic oscillator functions.
The lowest 700 states of the Ai symmetry class were
converged to five significant figures. Similarly to the
results of Eckhardt, Hose, and Pollak around half of the
calculated eigenfunctions are localized around a few short
PO's. The other half show a much more complicated
pattern, and it has been argued that they may be the result
of the interference of many PO's [19].

To gain more information on the scarring effect of the
PO's on eigenstates density patterns we will follow the
dynamics of a wave packet initially placed in phase space
in the vicinity of a particular PO

P x, y;xp, yp, P„,P =(2u/m. )

X exp[ —u(x —xp) —u(y —yp) ]

Xexp / P x+Py (2)

with u = 1/2.
The dynamics of this nonstationary state can be fol-

lowed —very conveniently in our case since it is a bound
system —by studying the infinite resolution spectrum

1.(E) = dt(@(0) l@(t)&
-'"1

27T —00

= g l(4 (0) ln&l'~(E —~.).

where ln& is the nth eigenstate of the system.
As a working example, we chose our initial wave

packet to be initially centered at (xp, yp, P, , P ) =
(2.76990,0, 0, 7.050225), so that the short term dynamics
is expected to closely follow that of the "box-type"
PO. This orbit, shown in Fig. 1, is highly unstable
(stability exponent a = 5.5842), and has been considered
in Refs. [9] and [18]. For the sake of making the presen-
tation simpler, we only consider the spectrum obtained

by using an A] symmetry adapted initial wave packet,
thus eliminating all contributions not belonging to this
symmetry class. The corresponding infinite spectrum,
shown in the lower part of Fig. 1 in the form of a stick
spectrum, is very complex. This result if not unexpected
since it contains information on the long term dynamics
of the wave packet. A way to simplify the spectrum is to
consider its low resolution, finite time version
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FIG. 1. Infinite resolution stick spectrum 1 (E) and its low
resolution version IT(E) (lower panel) for a wave packet ini-
tially centered on the box-type PO at an energy of 25.0.
Squared band wave functions, calculated with Eq. (5), corre-
sponding to each band are shown in upper panel; the box-type
PO's and the equipotential lines at the energies of the center of
the bands (see Table I) are also included.

= gl &( ly(0)& (5)

where Fo is the energy corresponding to the center
of the band and 7. the time associated to its width.
Approximated formulas similar to (5) have been used in

Refs. [20].
The results for the band wave functions, calculated

using the exact expression (5), are shown in the upper part
of Fig. 1, where we have placed each function on top of
the corresponding band [21]. The box-type PO's and the
equipotential lines calculated at the energies of the center
of each band are also included. It is clearly shown that
the calculated band wave functions appear very localized
in the region around the PO, with an increasing number of
nodes along it.

Let us consider now in more detail the localization
mechanism of the projection defined in Eq. (5). In

Fig. 2, we present the four eigenfunctions contributing
the most to the fourth band in lr(E) of Fig. 1 [21].
None of them show a preferred localization on the PO

T

1 (E) = dt (y(o)14 (t))e-'"2' -T
with T the recurrence time of the correlation function

(P(0) lP(t)&, around one-fourth of the classical period of
the box-type PO. The result is also presented in Fig. 1,
as a smooth curve, superimposed on the original stick
spectrum. It is apparent that it shows a much simpler and
regular pattern, consisting only of four roughly equally
spaced bands.

The wave function associated to each of these bands
can be calculated in a straightforward manner

1
dt l (jl (t))eiEOI

2r -7
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FIG. 2. The four (squared) eigenfunctions contributing the
most to the fourth band wave function of Fig. 1. They
correspond to the 63th, 65th, 66th, and 67th states of A&

symmetry with energies 76.169, 76.948, 77.154, and 77.581,
respectively. Remark that none of them show a preferred
localization; it is the effect of the linear combination in Eq. (5)
which localize the resulting band wave function on the box-type
PO, as shown in Fig. 1.

under consideration, and they present important density
values in other regions of configuration space. However,
some localization can be seen in the corresponding
quasiprobability distributions in phase space, given, for

example, by the QSOS defined by the cut of Husimi
function corresponding to y = 0 and P~ given by the state
eigenenergy. The results are presented in Fig. 3 [22],
where it is apparent that all of them have important values
at the phase points corresponding to the box-type PO
(indicated by semicircles in the figure). Nevertheless, the
QSOS present substantial values in other regions of the
available phase space. It is the effect of the coefficients
(n)$(0)), weighting the eigenfunctions in Eq. (5), which
cancels contributions from other regions of phase space,
making the appropriate linear combination of eigenstates
which localize the band wave functions over the desired
PO. In fact, the modulus of the coefficients (n[P(0)) is
the value of the QSOS at the phase space points which
corresponds to the box-type PO.

More insight into this localization mechanism can be ob-
tained from a semiclassical perspective. The key point is
that our results refer to short term dynamics. For short
times the dynamics of the true (nonintegrable) Hamilton-
ian does not differ very much from that of a suitable inte-
grable approximation to it; the initial Gaussian wave packet
would remain approximately Gaussian, and in the vicinity
of the box-type PO hyperbolic point analytical formulas for
the short time correlation function and the corresponding
convoluted spectra can be obtained. This shows clearly
the connection between the localization of the wave func-

FIG. 3. Contour plots of the QSOS for the four eigenfunctions
presented in Fig. 2. The boundary of the energy shell is
also included. Only the first quadrant is presented. Notice
that all of the QSOS have important values at the phase
point corresponding to the box-type PO, which is marked by
semicircles in the figure.

tion and the existence of peaks in the convoluted spectrum.
Motions with a long recurrence time (compared to the char-
acteristic time of the perpendicular unstable mode) will
then not show this effect. Also, from a practical point of
view, POs with complicated patterns will show, in general,
recurrence times before the one corresponding to the PO
period, distorting the convoluted spectrum, and the right
coefficients in Eq. (5) cannot be obtained.

We have performed a semiclassical analysis of the low
resolution version of the spectrum presented in Fig. 1.
In this case, and due to the mechanical similarity, this
analysis can be easily carried out from a single calcula-
tion by using the scaling relations S/So = (E/Eo) ~ and
T/To = (E/Eo) '~4. The results can be found in Table I,

E 2A = Kld/ rr Eb~„d

15.4989
22.1637
29.3766
37.0649

121.745
132.514
143.497
154.694
166.098
177.701

13.0000
17.0000
21.0000
25.0000
61.0000
65.0000
69.0000
73.0000
77.0000
81.0000

1.589 63
1.738 33
1.865 18
1.976 80
2.66099
2.718 16
2.77290
2.825 03
2.876 16
2.91773

2.8256
3.0900
3.3154
3.5138
4.7299
4.8315
4.9288
5.0215
5.1124
5.1863

14.96 2.90
22.06 3.58
29.33 3.62
36.83 3.22

121.6 4.36
132.6 5.34
143.1 6.54
153.9 5.28
165.1 5.04
176.2 6.24

TABLE I. Semiclassical analysis of the low resolution spectra
of Figs. 1 and 4. Classical action (S), frequency (ru), and
Lyapunov exponent (A) for the "box-type" PO at the energies
(E) satisfying the quantization conditions S = 4n + 1 for n =
3, 4, 5, 6, 15, 16, 17, 18, 19,20. The values of E and 2A should
be compared to the position (Eb,„q) and width (I ) of the low
resolution bands, whose values, obtained from Figs. 1 and 4,
are given in the last two columns.
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where we are presenting the classical action, the frequency,
and the Lyapunov exponent calculated at the energies sat-
isfying the quantization condition S = 4n + 1 for n =
3, 4, 5, 6, 15, 16, 17, 18, 19, and 20, n being the number of
nodal lines in the fundamental domain of the Ai band wave
functions. These actions correspond to band wave func-
tions of A& symmetry, due to the form that we have chosen
for the initial wave packet. By appropriately choosing
the symmetry of the initial wave packet, the band wave
functions of other symmetries, associated to intermediate
actions, could be obtained. Alternatively, a spectrum con-
taining all symmetries can be obtained from a single cal-
culation by using an initial wave packet without any sym-
metry, for example, a single coherent state centered in the
vicinity of the PO. For the sake of comparison with the
low resolution spectrum of Fig. 1, we have included in
the last two columns the energies at the center of the bands
and their widths. The position of the bands, its separa-
tion, and their widths should correspond respectively to the
quantized energies, 4 times (due to the A& symmetry cho-
sen for the initial wave packet) the frequency, and 2 times
[23] the Lyapunov exponent of the box-type PO [7]. As
can be seen in Table I the agreement is quite good. Thus,
the PO quantization seems to account completely for the
bands energies, and no zero-point energy contribution from
the perpendicular motion to the PO appears.

Finally, we address the question of how powerful our
method is. For that purpose, we have calculated more
spectra at higher energies. In Fig. 4 we present the spec-
trum corresponding to a wave packet initially centered at

(xo, yo, Po, Po) = (4.335 128, 0, 0, 17.26945) corresponding
to the phase space point of the box-type PO at an energy
of 150.0. Clearly the band structure is robust and survives
at this high energy (or equivalently at small fi), although
many more states contribute significantly to each band.
Results concerning the band wave functions for this spec-
trum and for other PO will be presented elsewhere.

To conclude, we have presented a method to reveal
the information concerning a PO contained in a group of
eigenstates in a chaotic Hamiltonian system. The results
are particularly striking in those cases, such as those
presented here, in which several eigenstates are involved.
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FIG. 4. Same as lower panel of Fig. 1 for a wave packet
initially centered on the box-type PO at energy 150.0.
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