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Random Copolymers with Short-Range Interaction in the Equihbrium State:
Mean Field Approximation and Numerical Studies
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We study macromolecules with quenched random charge disorder along the chain and short-range
interactions between the monomers. Within a mean-field approach a collapse of a chain with increasing
disorder is found, which becomes more pronounced for long chains. Molecular dynamics simulations
reveal the same tendency, though the actual shape of the radius of gyration as a function of the disorder
is different and reflects the finite length of a chain.
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Various concepts of the statistical mechanics of random
systems, such as spin glasses [1] or neural networks [2],
are used to describe the complex structural conforma-
tion of biological macromolecules. In spin glasses, the
strength and the sign of the interaction between pairs of
monomers are chosen at random [3,4] and we have the
statistics of N(N —1)/2 different interacting pairs. In
a neural network the interactions result from a learning
process, using the information from known structures [2].

As an alternative, in this paper we investigate a "charge"
model in which the interaction between two monomers
is well defined by a function of characteristic parameters
(charges) of the two monomers and a unique 8-like poten-
tial [5,6]. The randomness of the model consists in the
disorder of the monomer charge sequences [7]

U;~(r; —rj) = B(r; —rj) [vp + up(q, + ql) + q;qjj.

(1)
Here q; behaves as an effective charge of the monomer i,
which controls the interaction with the other monomers of
the chain. The first term corresponds to a nonstochastic
short-range interaction (for example, the excluded volume
interaction). The influence of the second term is discussed
in [7]. In case of charge inversion invariance (q, —q;),
we get uo = 0. In the following we consider this situation,
i.e., we will only discuss the influence of the random

charge products q;q, . For vanishing excluded volume
interaction a renormalization group study [6] shows a

collapse regime for long chains and below the critical
dimension d, = 2. Short chains exhibit in d ~ 2 both
a collapse regime and a swollen regime, depending on
the strength of the charges. In the latter regime the
characteristic lengths of the polymer molecule, e.g. , the
mean radius of gyration (see also the numerical results of
[5]) exhibit the following dependence on the chain length:
R2 —N", with v = 1 + (d, —d)2/8. An analysis of the
perturbation expansion in terms of Feynman diagrams [6]
shows that the contribution from the quenched average
over the charges becomes irrelevant for d ~ d, = 2, i.e.,

the annealed average shows above d, = 2 no essential
deviation from the quenched average. Furthermore, for
nonvanishing excluded volume effect and a dimension 2 &
d ( d,. = 4 (d, is the critical dimension of the excluded
volume effect) one can expect a swelling regime (for weak
stochastic interaction in comparison to up) with a crossover
to a collapse regime for strong interaction.

The aim of the present Letter is the analysis of these
two regimes and the crossover between them for 2 &
d & 4. Because of the vanishing difference between
quenched and annealed averages for d ~ 2, the free

energy is determined by (F) = (in Z) = In(Z), where (Z)
is the partition function averaged over all possible charge
distributions. Z is a product of the nonstochastic part (free
chain with excluded volume interaction, corresponding to
the free energy of the well known Flory model)

R N
ln Zo = d ln R ———&0 Rd

(2)

and the annealed averaged contributions from the stochas-
tic monomer interaction (Z„) = (exp( —V„)) with

V„= g q, qJB(r; —r, ) . (3)
l +J

The Taylor expansion leads to

(Z, ,) = (exp( —V,,)) = g pt

(
X g q;8(r; —"r, )q~

The averages in (4) can be calculated by usual mean-

field arguments. Assuming a Gaussian distribution for the

charges ((q;qi) = ApB,J) one can write

j
(g q;8 (r, —r, ) qj

)
= yy "&(q 8( —,)q, )(q 8( —,)q) ) (5)

i 4j kWI
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=exp bpN ——R" 1/1+ d ~
. (7)

1 „( 2bpNI
2 & Rd

From (7) and (2) the total free energy F is obtained,
which yields the (implicit) mean-field solution of R by
determining the minimum of F min!:

——1 = — lg 1 +
R 6 N R" & 26pN&
N Rd 2 k Rd )

2hpN
R" + 2&pN

(g)
Figure 1 shows the dependence of the averaged radius R
on the disorder parameter for different chain lengths (v =
1). The mean-field results are compared with molecular
dynamics simulations.

In the molecular dynamics simulation we consider
the chain to be comprised of mass points connected by
rigid bonds of length I. Consequently, we employ the
constraints (r; —r; i)~ = l~ in the united atoms dynamic.
Nonbonded interactions between points separated by more
than one bond are taken into account by the Lennard-
Jones potential

V(r; —rj) = 4e „+
C J 1

(9)

The value between two brackets ( . .) is defined as a pair,
the average of two charges as a contrantraction. For the
evaluation of (4) the following rules hold:

(i) A contraction within a pair (q;q, ) is forbidden.
(ii) Each contraction has the same value b,p and

cancels one summation (with P pairs follow therefore P
contractions and P free summations).

(iii) If there is a cyclic connection from one pair over
a set of I contractions back to this pair, we get a cycle
o t e engf h 1 th I. Each set of P contractions leads to

len th I (I =a configuration (n&) of ni cycles of the leng
2, 3, . . .).

(iv) The number of possibilities to construct the config-
uration (ni) is given by g(Ini)!/ P[ni!(I!)"'](for I ~ 2 .

v) Each cycle of length I has (I —I)!2t' '! additional
possibilities of the interior order for the contractions.

(vi) Each cycle of the length I contains also I functions
b(r; —r, ) with the same cyclic connection

~~

B(r; —r~)8(ri —rk) B(ri~ —r;) . ( )
&~J~"

Introducing the local monomer density P; 8(r; —r ) =
p(r) and replacing this value by the usual Flory approxi-
mation [p(r) = NR for r ( R and p(r) = 0 for r ~ R]
leads to the contribution (NR d)'Rdh(0), i.e., each pair
contributes a factor NR ", each cycle an additional factor
R B(0). b(0) is in the present model of the order /p (in-
verse effective monomer volume, lp is the effective seg-
ment length). Usually, R is determined in units of Ip, i.e.,
one can define B(0) = 1.

Finally, one gets the result

1 — (-2R hpN)
! 2IR 4-

~„,~ L j,1=2 nI ~ I=j
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FIG. 1. Mean-field approximation of the averaged radius of
gyration as a uR function of the disorder parameter o for

00 100 50, 10different chain lengths (N = 10000,5000, 1000,500,
from top to bottom) and u = 1.

(I; (r) I;&(r')) = 2k, Tym;8;, 8 IiB(r —r'), (l3)
with T the temperature of the system. The indices u, P
denote the Cartesian components (x, y, z) of the force.

The equations of motion were integrated using a
method proposed by van Gunsteren and Berendsen [8,9]
taking advantage of the fact that only nearest neighbors
interact along the chain. In the integration we used a time
step h=4X10 v for small Ao and h=2X10
for large bp, where r = (mo.~/e)'~~. For the damping
constant we c ose y =onstant we chose y = 10/r and for the temperature

The numerical results presented in Fig. 2 show the col-
lapse also found by the mean-field calculations, i.e., with

The r ' term accounts for the excluded volume of the
atoms, whereas the r term takes into account the
screened, short-range interaction between charges at
the atoms. Depending on the sign of the charges the
interaction is attractive or repulsive, respectively. Simi ar
to the mean-field calculations, we assume a Gaussian
distribution of these charges. With the parameter ~ = 1

the potential prevents chain crossings. The equations of
motion of the chain are given by

10m;r; =F;+F, —ym;r;+ I;,
where F; denotes the Lennard-Jones forces (9) and the
vector F,' the forces of constraint

F' = A; i(r; —r; 1) —A;(r;+i —r;), (11)I

induced by the constant bond lengths. The A; are
Lagrangian multipliers, for which Ap = AN = 0. The
friction force, with the damping constant y, and the
stochastic force I; ensures the simulation of a canonical
ensemble, i.e., the temperature of our systems is fixed.
The stochastic force is assumed to be a stationary,
Gaussian white noise process

(12)
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b, o to the asymptotic behavior R —N'id(l n b, o)
'iz due to

the repulsion term N R d [Eq. (2)], which cannot repre-
sent the hard-core-like structure of the monomers. But
this effect is only important for large local densities in
a strong collapsed regime. ) On the other hand, the ac-
curacy of the numerical results is mainly determined by
the realization of a sufficient large number of equilibrium
configurations. Because of the fact that the interior mo-
bility of the chain decreases rapidly with increasing 50
(in the collapse regime) this number (and therefore the
accuracy of the numerical results) decreases very fast or
one must increase the computation time considerably for
a fixed accuracy, i.e., results for very large 60 cannot be
obtained by the used numerical simulation. However, the
general scaling behavior for the collapse regime is given
by R —N'i", on the other hand, the weakly d 0 dependent
prefactor cannot be extracted reliably from the simulation
fol 50 ~ ~.

The crossover from the swelling to the collapse regime
was realized in a relative small interval of the disorder
parameter 50. The 0 behavior (Gaussian behavior of the
chain) corresponds to the turning point 50 of the R(b,o)
curves and shows a weak dependence on the chain length
N. The mean-field approximation predicts a monotonous
decrease of 50 with increasing N, whereas from the
numerical simulations a small deviation from this relation
is found [as a result of the fact, that for small chain length
the mean-field equations must be extended by additional
terms of the order O(L ')].
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FIG. 2. Radius of gyration as a function of the disorder
parameter Ao for chains of various length calculated by
molecular dynamics simulations. (a) N = 100, (b) N = 50,
(c) N = 30, (d) N = 20.

respect to the collapse the two calculations exhibit the
same qualitative behavior . Particularly for small values
of the disorder parameter 60 follows the characteristic
swelling regime (excluded volume), whereas for sufficient
large 50 a collapse is observed. As expected, the nu-

merical simulations show a marked inAuence of the finite
(nonvanishing) volume of the monomers in comparison to
the mean-field approximation, especially for short chains.
(Note, the mean-field approximation leads for very large
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