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Determination of Critical Exponents from the Multifragmentation of Gold Nuclei
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Using reverse kinematics, we have studied the breakup of 1.0A GeV gold nuclei incident on a carbon
target. The detector system permitted exclusive event reconstruction of nearly all charged reaction
products. The moments of the resulting charged fragment distribution provide strong evidence that
nuclear matter possesses a critical point observable in finite nuclei. We have determined values for
the critical exponents y, P, and 7. These values are close to those for liquid-gas systems and clearly
different than those for 3D percolation and the liquid-gas mean field limit.

PACS numbers: 25.70.Pq, 05.70.Jk, 21.65.+f

More than a decade ago the observation of a power law
distribution in the yield of intermediate mass fragments
produced in high energy proton-nucleus collisions led to
the suggestion that nuclear multifragmentation might be a
critical phenomenon [1]. Since that time, much progress
has been made in understanding how critical behavior
could manifest itself in such a small system. In particu-
lar, Campi [2] suggested that the moments of the frag-
ment distribution should exhibit features characteristic
of critical phenomena if indeed intermediate mass frag-
ments were produced in a system near its critical point.
Recent experimental results from the ALADIN Col-
laboration [3] have shown that existing models based on
nuclear physics do not describe multifragmentation data
as well as a simple percolation-based model, which is
known to contain critical behavior [4]. In this paper we

report the results of a recent experiment conducted by
the EOS Collaboration at the Lawrence Berkeley Labora-
tory Bevalac in which we studied the projectile fragmen-
tation of 1.0A GeV gold nuclei incident on carbon and
detected nearly all of the charged reaction products on an
event-by-event basis. These exclusive data permit the first
determination of the critical exponents associated with

multifragmentation.
The apparatus is shown in Fig. 1. Charged particles

were identified using a time projection chamber (TPC) [5]
for 1 ~ Z ~ 6, a time-of-flight wall (TOF) for 7 ~ Z ~
10, and a multiple sampling ionization chamber (MUSIC)
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FIG. 1. The EOS experimental setup. The Muffins neutron
detector was not used in this work. Beam diagnostic detectors
are not shown.

[6] for 11 ~ Z ~ Zb„. Of particular importance for
the analysis described below is the determination of the

charged particle multiplicity and the assignment of charge
to the heaviest fragments in the final state. Since most of
the reaction products are below charge 6, they are detected
in the TPC. Simulations show that the TPC reconstructs
tracks originating from the projectile source with nearly

100% efficiency, while the efficiency for reconstructing
tracks originating from the target source is low. The
measurement of target tracks is not important for our
analysis. The MUSIC detector has charge resolution
u. = 0.2e and was positioned such that —95% of all
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fragments 11 ( Z ~ Zb„ fell within its acceptance. The
TOF had a comparable acceptance. After all charged
reaction products were identified, the number of fragments
of each charge was determined neglecting pions. The
total reconstructed charge, Z,„,peaks at 79 with a full
width at half maximum of 6. Only those events whose
Z,„was79 ~ 3 were selected for further analysis (9716
events).

For each event, we determine the multiplicity of
charged fragments, m, and the number of charged frag-
ments, nz, of nuclear charge Z. We then construct the k
moments of this distribution:

Mq(m) = gZ nz(m)

M2 —
hei

Zmaa

(2)

(3)

nz —Z for m =m, , (4)

where e = m —m, is the distance from the critical
multiplicity. The exponents are not all independent [8],
since

r =2+ 0+v
Equations (2)—(4) can be applied to thermal systems

as well as to percolation. In a thermal system, M2
describes the isothermal compressibility which diverges

Campi [2] was the first to suggest that the methods
developed to study large percolation lattices may be
relevant to the analysis of multifragmentation data. In
percolation theory the moments of the cluster distribution
contain the signals for critical behavior [4]. Quantities
that display divergent behavior in macroscopic systems
still show a peaking behavior in finite sized systems. In
fact, it is well known in percolation theory how various
quantities scale with system size [7]. In the analysis
described below, we have used the methods developed for
determining percolation critical exponents to extract the
critical exponents for nuclear matter from the moments of
the fragment charge distributions.

We assume that m is a linear measure of the distance
from the critical point [2]. We will refer to the region
in m below m„the critical multiplicity, as the "liquid"
phase and the region above m, as the "gas" phase.
Following Stauffer and Aharony [4], we omit the biggest
cluster (fragment), denoted Z,„,from the sum of Eq. (1)
when we are on the liquid side of the phase transition.
Physically, Z,„corresponds to the bulk liquid in an
infinite system. The critical exponents y, P, and r for
large systems are given by

at the critical point. In percolation it is the mean cluster
size. In an infinite system Z,

„

is the order parameter
of the transition. In a fluid system the order parameter is
represented by the difference in density between the liquid
and gas phases. This quantity is nonzero only below
the critical temperature and vanishes at the critical point.
Finally, Eq. (4) gives the cluster distribution at the critical
point. In small systems the singular nature of Eqs. (2) and

(3) is influenced by finite size effects.
We now briefly describe the procedure by which we

determine the critical exponents. Further details of the
method can be found in Ref. [9]. The first step is to
use the second moment to determine y. In percolation
theory finite size effects can be offset by adjusting p,
from its infinite lattice value until one obtains power law
behavior with the same value for y in M2 on both the
liquid (p ( p, ) side of the transition and on the gas side

(p ) p, ) (for bond breaking percolation). We have taken
the same approach using multiplicity. We seek that value
of m, that gives the same value of y for both the gas and
liquid sides of Eq. (2). The value of y can depend on the
region of e used since finite size distortions dominate as
e ~ 0, and signatures of critical behavior vanish for large
e, i.e., in the mean field regime.

The determination of the exponents was made by first
selecting those values of m, for which yi;q 'd and yg„
differed by no more than 10%. The distribution of m, 's
satisfying this matching criterion is peaked at 26. We
have chosen m, = 26 ~ 1 for our subsequent analysis.
For each of these values of m, we then make many
determinations of y, P, and r by varying the fitting region.
The value of P was determined by a fit of Eq. (3) to the
liquid side. The exponent r was determined from the
slope of ln(M3) vs ln(M2) [2], where we have used only
the gas branch of the plot. The removal of the largest
fragment in the liquid branch is a major perturbation
on this correlation. This feature was observed in our
percolation simulations using the L = 6 lattice [9]. We
also determined r using Eq. (4) and obtained consistent
results. Representative fits for y and P are shown in
Figs. 2 and 3, respectively. The final values for the
exponents are obtained by averaging all 370 trials made
for the three choices of m, and are reported in Table I.
The errors listed there are standard deviations. We note
that the values of P, y, and r obtained using our method
obey the scaling relation, Eq. (5).

The exponent values obtained via our procedure do
not depend critically on our choice of a 10% slope
matching criterion. Repeating our analysis requiring a
more stringent 3% matching does not alter the values of
the exponents. The exponent values are also relatively
insensitive to m, . Thus a change in m, of one unit leaves
the values unchanged within their statistical uncertainties.
In order to judge the robustness of the exponent values
with respect to Z,„,we have also done the analysis for
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I I I8 TABLE I. Critical multiplicity and exponents for Au projec-

tile fragmentation and other three-dimensional systems.
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FIG. 2. Example of the determination of the critical exponent
y for particular gas and liquid fitting regions.

events with Z,„=72—75 or 83—86. The results again are
statistically unaltered.

Our analysis tacitly assumes that all of the projectile-
related charges are associated with multifragmentation.
Protons are also emitted during the prompt cascade
[10] and can be evaporated from either the cascade
remnant or from fragments [11]. Protons from both of
these sources should in principle be excluded from the
multiplicity and moments. Using a method employed at
lower energies [12], we have determined that there is
a linear relation between the total observed multiplicity
and that associated with the post-cascade stage alone.
Furthermore, the moments are dominated by the largest
charges and removing protons has little effect on their
value. Thus the exponents are essentially unaffected by
the inclusion of cascade protons.

Our data show that the number of evaporated protons
must be a small fraction of the total. Events at the
critical multiplicity involve, on average, the emission

of 19 Z = 1 particles of which 11 are protons. We
estimate on the basis of the proton rapidity distribution
that 6 prompt protons are emitted in an event near the
critical multiplicity. The power law distribution at m,

Eq. (4), is consistent with the emission of about 10 Z = l

particles in multifragmentation indicating that only 2 or
3 protons are evaporated in each critical event. Owing
to the Coulomb barrier, these protons presumably come
from the lighter fragments and so have a small effect on
the moments.

We have selected for comparison with our data sev-
eral three-dimensional systems possessing a scalar order
parameter, liquid-gas [8], percolation [4], and the mean
field limit of the liquid-gas system [13]. These values are
also listed in Table I. When comparing the experimen-
tal exponents with the others listed in the table, we note
that r is close to 2.2 in all cases. In Fig. 4 we plot tke
value of P versus y for the Au multifragmentation data
and for the other systems in Table I. It is noteworthy that
the fragmentation result is close to the point for liquid-gas
systems and is significantly distant from either the perco-
lation or liquid-gas mean field results. For macroscopic
systems, the critical exponents describe the power law be-
havior of thermodynamic quantities as the critical point is

approached. We expect critical behavior to be effectively
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FIG. 3. Example of the determination of the critical exponent
P for a particular liquid fitting region.
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FIG. 4. y versus p after applying selection criteria described
in text. For comparison, liquid-gas, 30 percolation, and liquid-

gas mean field values are sho~n.
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observable in finite size systems as long as the charac-
teristic length and the number of degrees of freedom are
sufficiently large. We believe that the Au system achieves
this based on the observed power law behavior, and thus
permits the extraction of exponents which may apply to
infinite nuclear matter.

In conclusion, we have analyzed the fragment distri-
butions resulting from 1.0A GeV gold ions incident on
carbon. Events in which the total reconstructed charge
was within 3 units of the charge of gold were chosen
for analysis. We have used techniques from percolation
theory applied to small lattices [9] in order to determine
independently the values of three critical exponents. The
influence of finite size effects has been addressed by our
procedure. The charge moments of nuclear multifragmen-
tation provide strong evidence for critical behavior in fi-

nite nuclei. We find that these exponents are close to
the nominal liquid-gas values. A number of open ques-
tions remain, most importantly whether the system is in
thermal equilibrium and, if so, whether the multiplicity is
proportional to temperature. To answer these questions
and to further characterize this phenomenon, work is in
progress to understand the dynamics of the multifragmen-
tation process.
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