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Dynamics by White-Noise Hamiltonians
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A new class of random quantum-dynamical systems in continuous space is introduced. Each
member of the class is characterized by a Hamiltonian which is the sum of two parts. While one
part is deterministic, time independent, and quadratic, the Weyl-Wigner symbol of the other part is a
homogeneous Gaussian random field which is 6 correlated in time and arbitrary, but smooth in position
and momentum. Exact expressions for the time evolution of both averaged states and observables are
obtained. If the deterministic part is that of a particle subject to a constant magnetic field, spatial
variance of the averaged state grows diffusively for long times independent of the initial state.
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The spatial spreading of a state under the free time
evolution is a well-known and fundamental phenomenon
in nonrelativistic quantum and classical mechanics [1].
In order to make a quantitative statement, let 0-,'- denote
the variance of the position at time t of a spinless
point particle moving in continuous space. It is assumed
that the particle was prepared initially in some state,
which is normalized but not necessarily pure. For a free
particle a simple calculation then shows that o.t~ increases
asymptotically for large t as tr2 —r"-gn/rn2. Here m ) 0
is the mass of the particle and go is the variance of its
momentum in the initial state. This relation holds both in

the quantum and in the classical case. However, classical
states, e.g. , pure ones, may have a sharp momentum,
that is, go = 0, whereas go ) 0 for all quantum states,
including the pure ones ("wave-packet spreading"). It is
clear that cr, can also be calculated exactly for a time
evolution governed by a more general Hamiltonian being
at most quadratic in momentum and position [2].

A variety of physical systems, whose properties are
unknown in detail, are successfully modeled by a Hamil-
tonian with a random part added to a (simple) determin-
istic part. Thus it is a challenging problem to study the

properties of the random variable o., and of related key
quantities in these models. For recent investigations de-
voted to the question, how the ballistic long-time behavior
of o-t2 of the free particle is modified by adding a Gaussian
time-dependent random potential, see [3—6] and refer-
ences therein. A stepping stone in this direction was the
work of Jayannavar and Kumar [3], who —in building on
treatments of lattice models [7]—exploited the simpli-

fying feature of a vanishing correlation time ("Gaussian
white-noise potential" ). Their main result concerns the
quantum case with a particular pure initial state. They
derived an exact expression for the spatial variance X, of
the averaged state at time t and found X2, —t' for large
t (Note that the. averaged spatial variance cr~ never ex-
ceeds 2~i.) Interesting attempts to incorporate a nonzero
correlation time by the use of perturbative methods —with

partially conflicting results —can be found in [5].

However, several problems of considerable interest
have not been tackled so far or deserve further study.
First, in order to describe the effects of externally applied
force fields, one must not restrict the deterministic part of
the Hamiltonian to that of a free particle. For example,
the presence of an electric field is discussed in [8]. Here
we will see that a constant magnetic field leads to a
diffusive behavior in the sense that X~ —t, a result with
some relevance for magnetotransport theory. Second, the
random part can be generalized to cover the case of a
momentum-dependent (in other words, nonlocal) random
potential, which is the continuous-system analog of off-
diagonal disorder in lattice systems [7]. This is of interest,
for example, to caricature the effective motion of a test
particle due to inelastic scattering by the irregular motion
of other particles. It suggests itself also from the point of
view of Hamiltonian mechanics. And last, we will show
that the above-mentioned noise-induced results are neither
affected by quantum fluctuations nor do they depend on
the initial state.

In fact, it is the main purpose of the present Letter to
demonstrate that there is a rather general class of Gaussian
white-noise Hamiltonians for which one can obtain exact
and explicit results on the averaged time evolution. Yet
before we describe this class in detail, it seems adequate
to comment on -the representation we are going to use
throughout.

We consider a quantum-mechanical system which, for
simplicity, has the Euclidean line R as its configuration
space. The extension to the d-dimensional Euclidean
space IRd is merely a matter of notation. Since the random

part of the Hamiltonian will be allowed to depend on both
position and momentum, it is convenient to characterize
its properties in terms of those of an associated random
function on classical phase space R && R. Therefore, and

in order to treat the classical limit with low effort, it is

only consequent to represent the quantum system entirely
in phase space. The representation we choose is the one
dating back to ideas of Weyl, Wigner, and Moyal [9),
where a quantum operator f acting in the Hilbert space of
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H(p, q) + N(p, q; t) . (2)

By definition, the Hamiltonian operator is obtained from
(2) by inverting (1), that is, by Weyl ordering. For
simplicity, the deterministic part H(p, q) is supposed to
be time independent and at most quadratic in p and q.
The random part N(p, q; t) is supposed to be a Gaussian
white-noise field with mean zero and covariance

N(p, q;t)N(p', q', t') = C(p —p', q
—q')B(t —t') . (3)

Here the overbar denotes averaging with respect to the
probability distribution of N and homogeneity is assumed
just for brevity. By its probabilistic origin, the covariance
function C may be any even phase-space function with a
non-negative (symplectic) Fourier transform

dp dqC (x, k):= 2 C (p, q) cos(xp —kq) ~ 0.
RxR (2n. )

For later purpose we will assume that C is suffi-
ciently smooth, equivalently, that the probability density
C (x, k) /C (0, 0) has moments of sufficiently high order.

In the Schrodinger picture the time evolution ~0 ~ ~,
of a given initial state wo is determined by the stochastic

square-integrable functions on R is represented uniquely

by its symbol, that is, by the phase-space function

f(p, q):= )~ dr e'~"" (q —r/2[f[q + r/2) . (1)

We recall that the symbol of the standardized commutator

(i/h){fg —gf) of two operators f and g is the Moyal
bracket of their respective symbols

[f.g] (p. q):= f(p q)

2 . IhX —sin ' —a a —a a g(p, q) .t
]

For nonpolynomial f and g it is often advantageous to
rewrite [f,g] as a Fourier-integral expression. Of course,
in the classical limit, when Planck's constant h tends to
zero, the Moyal bracket reduces to the Poisson bracket.
An observable, corresponding to a self-adjoint operator,
has a real symbol a. A quantum state is represented by
a Wigner density w which, by definition, is (2mb) times
the symbol of the corresponding "density matrix, " that is,
of a positive unit-trace operator. The expectation value
(or mean) of the observable a in the state w is then given

by the scalar product

(w, a):= dp dq w(p, q)a(p, q) .
RxR

We recall that ~w(p, q)~ ~ (n.h) ' and that (w, 1) = 1.
Moreover, (w, w) ~ (2mb) ' with equality if and only if
w represents a pure quantum state. In the classical limit
a quantum state w converges (weakly) to a probability
density on phase space, that is, to a classical state.

Now we are in a position to introduce a dynamics
governed by a Hamiltonian on phase space which we call
white-noise Hamiltonian

quantum Liouville equation [10]associated with (2)

a, w, = [w„H] + [w„N(t)] . (4)

t(C +3&)—
with the unperturbed Liouville operator

L:= (8p H)Bq —(BqH)B p

(6)

(7)

Here the bracket [w„H) is in fact a Poisson bracket due to
the quadratic nature of H. In order to derive an equation
of motion for the averaged state w, (p, q):= w, (p, q) from

(4), we follow essentially the earlier treatments in [3,7]
and perform a functional integration by parts with respect
to the Gaussian average [11]. In doing so, we think of
the Dirac delta function in (3) as being approximated by a
sequence of smooth covariance functions with correlation
time tending to zero, which amounts to the Stratonovich
interpretation [12]of (4). The final result can be cast into
the form of the linear integro-differential equation

1 AJ

B,w, (p, q) = [w„H)(p, q) + —
2

dxdk C(x, k)
lgxR

x (w, (p + hk, q + hx) —w, (p, q)) (5)

which is valid for t & 0 and has to be supplemented by
the initial condition ~q = ~0. Several remarks are in
order:

(i) Equation (5) is a substantial generalization of the
main result of [3]. In the special case of a free deter-
ministic part, H = p2/2m, and a momentum-independent

noise, C(x, k) Oc 8(x), it reduces to an equation which
is equivalent to Eq. (8) in [3]. Furthermore, the subse-

quent treatment of Eq. (8) in [3] is restricted to a pure
initial state represented by a joint Gaussian wo with

(wo, p) = (wo, q) = (wo, pq) = 0, (wo, q ) = oo X 0,
and (wp, p ) = (6/2o. o) .

(ii) The averaged time evolution 1, : wo ~ w, given

by (5) provides an example of a quantum-dynamical
semigroup [13,14] which is monotone mixing increasing.
By this we mean that 5, maps Wigner densities linearly
to Wigner densities, 2, o 1, = 1,+, for all t, t' ~ 0,
7O = identity, and 8, (2,(wo), '7, (wo)) ~ 0 (with equality
only in the uninteresting case where the covariance
function C is a constant). The inequality follows from
scalar multiplication of (5) by w, = 1,(wo), by observing
(w„[w„H]) = 0, the Cauchy-Schwarz inequality, and

C ~ 0. To summarize, the average over randomness has
turned the fully reversible quantum Liouville equation
(4) into Eq. (5) with coherence-destructing irreversible
behavior.

(iii) Interestingly enough, modified quantum-dynamical
equations similar to (5) are discussed in very different
branches of physics. These include quantum theories
not only of certain disordered systems, but also of the
measurement process [15], of Markovian transport [13],
and of the evaporation of black holes [16].

(iv) As for the generator of the semigroup, one deduces
from Eq. (5) that
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2, = e '~exp ds e'~ m e '~ (8)

We note that due to the quadratic nature of H the
operators e'~ 3V e '~ commute at different times s and

can be written more explicitly as

3V' e ' = h (C(0, 0) —C( ibad—C„{'jtX,) t. (9)

Here we have introduced the time-dependent first-
order differential operators 3C, := ({I~e '

q){)~ +
(B~e '~ p)B~ and X, := (B~e '~ p){1~ + (B~e ' q)B~,
whose coefficients are obtained from the phase-space
trajectory of the unperturbed problem as indicated, and do
not depend on p and q.

(vi) By using (8) and (9) it is straightforward to de-
rive a Fourier-integral expression for the integral ker-
nel T,(p, qip', q') of 2„which is the solution of (5)
with initial condition Tp(p, qip', q') = 6(p —p'){{i(q-
q'). Since this expression is somewhat lengthy and will

not be needed below, we omit it.
(vii) The quantum-dynamical semigroup 2, admits also

a purely classical interpretation. This is because it is posi-
tivity preserving, which follows from (8) and the fact that

C( ih{)~,—ih{)~) and e-'~ are positivity preserving. There-
fore, 7, maps classical states to classical states. In other
words, its integral kernel T,(p, q i p', q') can be interpreted
as the transition density of a stationary, in general non-

continuous, Markov process in phase space and Eq. (5)
may be viewed as the associated classical kinetic equa-
tion. In fact, up to the drift arising from H, it is a linear
Boltzmann equation with a (homogeneous) stochastic ker-

nel [17] and an increasing Boltzmann-Gibbs entropy:
),(7{,(—p)w, ln 1,(wp)) ) 0. It is used, e g , in quas. ic.las-

sical theories of charge transport in semiconductors [18].
(viii) Assuming an h-independent covariance function

C, one has the expansion

3V = Dp2&& —D{ {{i&—{1&
—D2p{i& + 0(h ij ), (10)

where the three constants D02, Di i, and D20 as defined

through D~, := ( i B~)"(i {i~)"C(—0, 0)/p! v! rellect the

curvature of C at the origin and obey the inequalities

D02 0 and 4D20D0, 2 Di i due to C ~ 0. As a
consequence, in the classical limit Eq. (5) reduces to a
Fokker-Planck type of equation in phase space with drift
and diffusion as given by (7) and (10).

Now we return to the problem posed in the beginning
of this Letter, namely to evaluate the averaged expectation
value (w„a) of a simple observable a at time t, given the

initial state wo. For this purpose it is useful to switch to

and the noise-induced, irreversibility causing operator

2V:= ii (C(0, 0) —C(—ih{tq, ibad„)t.

(v) For the derivation of explicit results it is often useful
to isolate the unperturbed time evolution in (6) according
to standard perturbation theory

the Heisenberg picture according to

(w, , a) = (w, a) = (2,(w{)) a) =: (wp '7*(a)) . (11)
The thus defined adjoint semigroup 7,* can be obtained
from (6) or (8) by reversing the sign of X .

To be more specific, we first choose the deterministic
part of the Hamiltonian (2) to be that of a free particle,
H = p~/2m. Taking the observables p, q, p'-, pq, q~,

and q' as examples, one then finds explicitly

7,*(p) = p, 7,*(q) = q + tp/m. (12a)

2,"(p ) = p- + 2tDp ~, { 12b)

7,"(pq) = p(q + tp/m) + tD{ { + t Dp~-/m, (12c)

T,*(q-') = (q + tp/m) + 2Q&(t),

&*(q') = (q + t p/m)' +»((q + tp/m)-'Q3(t)

+ & Qs(t) + [Qs(t)] j ('12e)

Here Q„(t):= g"„=it"D„„„i m' '/v is a polynomial
of (highest) degree p, in time. Quantities such as the spa-
tial variance of the averaged state X2:= (wp, 1,*(q2))—
(wp, 2,*(q))2 or the averaged mean-square displacement
/{,"-:= (wp, 'E,*(q2) —2q2, *(q) + q ') at time -t, may now

be obtained immediately.
The exact results (12) illustrate important features valid

for general quadratic H: Observables which are linear
in p and q are not affected by the white noise N.
Moreover, noise-induced terms in averaged expectation
values (11) of quadratic observables are independent of
the initial state. Assuming an h-independent covariance
function C, noise-induced effects affected by quantum
fluctuations occur only for observables of at least fourth
order in p and q. However, very special situations are

needed for quantum effects to show up in the leading term

for long times. For example, taking the observables p"
or q", 4 ~ n integer, one must require the phase-space
trajectories of H to grow exponentially in time. This
remark contradicts certain expressions in [6], since the

underlying "correlation functions" considered there do
not have a positive Fourier transform, and are therefore

physically insignificant.
White-noise Hamiltonians may reveal a diffusive be-

havior in a weak sense, that is, 2,'(p2) —t and/or

2,*(q2) —t for long times. The simplest case for weak

diffusion to occur in both momentum and position cor-
responds to H = 0, as follows from (12b) and (12d) in

the limit m = ~. It occurs also if the deterministic part
describes a harmonic oscillator and, more strikingly, in

the case of a particle with electric charge —e moving in

the Euclidean plane IR under the influence of a perpen-
dicular constant magnetic field of strength im{a/ei. In
the latter case we choose H = (2m) '[(p{ —mcaq2/2) +
(p2 + m{uqi/2)2) and, for the sake of brevity, we assume

the covariance function C(p, q) to depend only on the

lengths of p:= (p{,p2) and q:= (qi, q2). By a simple

extension of the presented methods to higher dimensions,
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one then finds for the averaged squared position at arbi-

trary time t the exact result

&*(q') =(e"q) —t
l

I + la' C(0, 0)
[2]

For lucid and rigorous discussions see, J.E.G. Farina,
Am. J. Phys. 45, 1200 (1977); Int. J. Theor. Phys. 21,
83 (1982); J.R. Klein, Am. J. Phys. 48, 1035 (1980).
See, e.g., D. F. Styler, Am. J. Phys. 58, 742 (1990).
A. M. Jayannavar and N. Kumar, Phys. Rev. Lett. 48, 553

(13)

Here e'~ q is nothing but a cyclotron orbit associated
with H. As in lattice models [7], but unlike the free-
particle case (12d), the leading term in (13) for large
t &) co ' is influenced by the noise in both momentum
and position. Note also that the long-time behavior of
7,*(q ), and hence of X, and Az„changes abruptly from
a cubic to a linear behavior when turning on a magnetic
field. When the fluctuating environment is modeled by
colored noise, we expect the same trend. However, the
growth should be slower and, as a new feature, it should
depend on the initial state. To verify these conjectures,
nonperturbative methods are needed for controlling the
long-time behavior of quantities as Xz, and Azt in these
non-Markovian models.

In the strictu sensu continuum model considered here,
nonsmooth covariance functions as C(p, q) ~ B(q) do not
lead to finite results, unless one performs a suitable lattice
regularization. In doing so, a diffusive behavior with a
saturating averaged energy can be obtained as in [4], even
for H = pz/2m.

Returning to smooth covariance functions, it is not
surprising that, except for very particular deterministic
parts such as H = (p —Dq )/2m with D ~ Dpz/D2p,
white-noise perturbations lead to a linear increase in time
of the averaged energy

1&*(H) = H + t(Dp 28&H + D& &(3&B&H + D2 or) &H).

To compensate for this effect and, if possible, to allow for
an eventual approach to a stationary (equilibrium) state,
dissipation has to be incorporated, typically by coupling
the white-noise system to a heat bath in the spirit of
[19]. In the context of noise and dissipation, Accardi's
program "quantum stochastic mechanics" [20] is very
promising for a deeper understanding of quantum time
evolutions.

W. F. acknowledges support by the Evangelisches
Studienwerk Villigst (Schwerte, Germany) and P. M. ac-
knowledges support by the Studienstiftung des deutschen
Volkes (Bonn, Germany).

(1982).
[4] J. Heinrichs, Z. Phys. B 57, 157 (1984).
[5] L. Golubovic, S. Feng, and F.-A. Zeng, Phys. Rev. Lett.

67, 2115 (1991);M. N. Rosenbluth, ibid 69., 1831 (1992);
J. Heinrichs, Z. Phys. B 89, 115 (1992).

[6] A. M. Jayannavar, Phys. Rev. E 48, 837 (1993).
[7] A. A. Ovchinnikov and N. S. Erikhman, Zh. Eksp. Teor.

Fiz. 67, 1474 (1974) [Sov. Phys. JETP 40, 733 (1975)];
A. Madhukar and W. Post, Phys. Rev. Lett. 39, 1424
(1977).

[8] A. P. Jauho, J. Phys. A 20, 2895 (1987).
[9] See, e.g. , the reviews, V. I. Tatarskii, Usp. Fiz. Nauk. 139,

587 (1983) [Sov. Phys. Usp. 26,311 (1983)];N. L. Balazs
and B.K. Jennings, Phys. Rep. 104, 347 (1984).

[10] R. Kubo, J. Math. Phys. 4, 174 (1963).
[11] E.A. Novikov, Zh. Eksp. Teor. Fiz. 47, 1919 (1964) [Sov.

Phys. JETP 20, 1290 (1965)]; J. Glimm and A. Jaffe,
Quantum Physics, A Functional Integral Point of View

(Springer, New York, 1987), 2nd ed. , Thm. 6.3.1.
[12] W. Horsthemke and R. Lefever, Noise Induced -Transi

tions, Theory and Applications in Physics, Chemistry, and
Biology (Springer, Berlin, 1984).

[13] H. Spohn, Rev. Mod. Phys. 52, 569 (1980), and references
therein.

[14] R. Alicki and K. Lendi, Quantum Dynamic-al Semigroups
and Applications (Springer, Berlin, 1987).

[15] E. Joos and H. D. Zeh, Z. Phys. B 59, 233 (1985); G. C.
Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470
(1986); 36, 3287 (1987); E. Joos, 36, 3285 (1987); J.S.
Bell, Speakable and Unspeakable in Quantum Mechanics
(Cambridge University Press, Cambridge, 1987), p. 201;
G. C. Ghirardi and A. Rimini, in Sixty Two Year—s of
Uncertainty, edited by A. I. Miller (Plenum, New York,
1990), p. 167; P. Pearle and E. Squires, Phys. Rev. Lett.
73, 1 (1994).

[16] S.W. Hawking, Commun. Math. Phys. 87, 395 (1982);
T. Banks, L. Susskind, and M. E. Peskin, Nucl. Phys. B
244, 125 (1984); S.W. Hawking, ibid 244, 135 (1.984).

[17) A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise,
Stochastic Aspects of Dynamics (Springer, New York,
1994), 2nd ed. .

[18] P. A. Markowich, C. A. Ringhofer, and C. Schmeiser,
Semiconductor Equations (Springer, Wien, 1990).

[19] See, e.g., G. W. Ford, J.T. Lewis, and R. F. O' Connell,
Phys. Rev. A 37, 4419 (1988); H. Grabert, P. Schramm,
and G.-L. Ingold, Phys. Rep. 168, 115 (1988); K. Sogo
and Y. Fujimoto, Physica (Amsterdam) 168A, 820 (1990).

[20] L. Accardi, Rev. Math. Phys. 2, 127 (1990).

1581


