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Exact Dynamical Correlation Functions of Calogero-Sutherland Model and One-Dimensional
Fractional Statistics
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One-dimensional model of nonrelativistic particles with inverse-square interaction potential known
as the Calogero-Sutherland model is shown to possess fractional statistics. Using the theory of Jack
polynomials the exact dynamical density-density correlation function and the hole propagator part of
one-particle Green's function at any rational interaction coupling constant are obtained and used to
show clear evidences of the fractional exclusion statistics in the sense of Haldane s "generalized Pauli
exclusion principle. " This model is also endowed with the corresponding natural exchange statistics.

PACS numbers: 05.30.—d, 71.10.+x

The quantum particles obeying fractional statistics
known as anyons have been a subject of intense study
since the discovery of the fractional quantum Hall effect
and higlt T, superco. nductors [1]. The subject, however,
is far from complete. In fact, even the simplest model
of anyons, namely the ideal gas, has not yet been fully
understood. To add to the confusion, there are now
two seemingly nonequivalent definitions of fractional
statistics. While the popular definition of anyons is
based on the quantum phase arising from the exchange
of particles [1], Haldane's definition [2] is based on the
so-called "generalized Pauli exclusion principle. " The
main difference between the two approaches is that while
in the former the statistics is assigned to the Newtonian

point particles, in the latter it is obeyed by the elementary
excitations of condensed matter system.

There are no fully solvable two-dimensional models
where the ideas of fractional statistics can be rigorously
tested. In one dimension, however, there is such a model
known as the Calogero-Sutherland model (CSM) [3]. I
show in this Letter that the two definitions of fractional
statistics can coexist in CSM without any inconsistency.
Following Ref. [4], I construct the motifs for all the excited
states and explicitly demonstrate that the quasiparticles and

quasiholes obey the Haldane's exclusion statistics. I also
solve the exact ground state dynamical density-density cor-
relation function (DDDCF) and the hole propagator part of
the one-particle Green's function and show that the con-

tributing intermediate states involve only a finite number of
quasiparticles (holes) consistent with the ideal "anyon" gas
structure of this model. In calculating the correlation func-
tion and propagator a new mathematical technique based
on the theory of Jack symmetric orthogonal polynomials

[5] is used.
The CSM Hamiltonian, which describes a system of

W nonrelativistic particles interacting with inverse-square
exchange, is given by

ii- ~ 2A(A —1)

where Ii-/2m = 1 and d(x; —
&, ) is the chord distance

between the ith and jth particles on a ring of length L and

is equal to ~(L/m. ) sin[a. (x; —y, )/L j The dim. ensionless
interaction coupling constant A is a positive real number

that specifies the natural statistics of this model. For
the special values of A = 1/2, 1, and 2, the model is

related to the orthogonal, unitary, and simplectic random
matrix theory [6], respectively, and DDDCF for those

values have previously been found by the supersymmetry
technique [7]. For A = 2, the full one-particle Green's
function has also been found [8,9].

One of the main results of this Letter is the calculation
of the dynamical density-density correlation function at

any rational interaction parameter A = p/q. It is given

by

(Oip(x, t)p(0, 0)iO) = C dx;
i dye Q F(q, p, Ai(x;r, yi]) cos(Qx)e')

where Q and E, the total momentum and energy, are given in units of fi and fi. "-/2m by.
(&

Q=2~p Px, + Py,
j=tl j= 1

( q p

E = (27r p)' g ep (x, ) + P eH (y, )
j=l j=l
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where p = N/L, ep(x) = x(x + A), and eH(y) = Ay(1 —y). x, (ep) and y, (eH) are normalized momentum (energy) of
the quasiparticles and the quasiholes, respectively. The normalization constant C is given by

r- (A) r" (1/A) ~ I (q —(j —1) /A) ~

%=i I'(p A( —I) ) +j=i "'(q —(J' —1) /A) =i 1(l —(j —I)/A) j

A2P(q —1) I 2(p)
A(q, p, A).

27T p.q.

Finally, the form factor F(q, p, A~[x;, y, )) is given by

F(m, n, A~[x;, y, ]) =
I I I I ~ 1 I Ii=lj=l

(x; +

A l/W

H;&, (x —x, )' H;&, (y —y, )'
2

H';=i ep(x)' "H,"=i eH(y, )' ""

The results of Simons et al. at A = 1/2, 1, and 2 with an

appropriate change of variables agree with Eq. (2) up to
the normalization constant. Haldane guessed the correct
form factor based on the information given by Simons
et al. , Galilean invariance, and U(1) conformal field
theory [10].

The ground state of CSM is given by
N

q'o = (zj —zi) zj~', (8)
j&l j=l

where z, = exp(i2qrx, /L) and Jo —— A(N —1)—/2. If a
general eigenfunction with energy E is written as W =
%04, then 4 is an eigenstate of the following new
effective Hamiltonian H'

Lk, = 2qrIJ + qr(A —1)gsgn(k, —ki),
I

(10)

with I, = K, + (N + 1 —2j)/2, then the eigenenergy
and momentum take the following free form: E =
h~

2 QJ k, and P = fig, k, Using a method . developed
by Yang and Yang [11],Sutherland calculated the ther-

H'=g(z, a, ,
)'C + Ag

' '(z, a, —z, a,,)a, (9)
I i(j Zt ZJ

and satisfies H'4 = e4 where e = (L/2qr)2(E —Eo).
An amazing coincidence happens if b, = (AN —A—
1)g, z, B,, is added to Eq. (9). A complete set of lin-
early independent solutions of the resulting equation is
known in mathematical literature as the Jack polyno-
mial J„' "(zi, . . . , zN) [5]. The index K = (Ki, K2, . . . , K~)
is the partition of non-negative integers and is essen-
tially a set of bosonic quantum numbers used to label
all the eigenstates of CSM up to global Galilean boosts.
In particular, the ground state is given by the partition
of zero (i.e., Ki = K2 = = K~ = 0). The parts KJ s
of partition ~ are ordered so that Kl ~ K2 ~ ' ~ ~ + KN.
Since the J„ is a homogeneous symmetric polynomial
of degree )K~ = g,. K, , it is also an eigenfunction of 6
with eigenvalue (AN —A —1)~K~ and thus of H' with
8 = g) K~ + A(N + 1 —2j )K, . If the pseudomomenta
k, 's are defined by

modynamics for CSM [12] and found that the densities of
occupied (pp) and unoccupied (pH) k satisfy the follow-
ing relation: App(k) + pH(k) = 1. This is a statement of
broken particle-hole symmetry for A 4 1 and an analog
of the Chem-Simons duality. pp(k) satisfies the fol-
lowing relation [13]: (1 —App)"[1 —(A —1)ppj" ' =
pp exp[[e(k) —p, j//T), with e(k) = k2, which is identical
to that of the ideal gas obeying Haldane's fractional ex-
clusion statistics [14]. I emphasize here that the statistical
distribution above is only for the pseudoparticles and is
not related to the statistics of the real particles.

I use three different names for the particles in the
model —real, pseudoparticles, and quasiparticles. The
real particles are, of course, the physical quantum particles
described by the canonically conjugate coordinate and
momentum variables (x, , p, ). The pseudoparticles are de-
scribed by the pseudomomentum operators [see Eq. (15)]
whose eigenvalues are given by Eq. (10). The quasi-
particles are the elementary excitations of the system.
Because the pseudoparticles form an ideal gas, the quasi-
particles are essentially the same as pseudoparticles ex-
cited out of the condensate. The holes left behind in
the pseudoparticle condensate will be called quasiholes.
Hence, the name "pseudo" and "quasi" will be used inter-
changeably in some cases.

If A = p/q, where p and q are relative primes, the mo-
tifs for eigenstates can be constructed. The ones and zeros
in the motif mean occupied and unoccupied k, , respec-
tively. From Eq. (10) the following rules can be deduced
for constructing the motif. (i) Total of N ones in the motif
represent the pseudoparticles. Hence, the charge of pseu-
doparticle and real particle is the same. (ii) The allowed
number of zeros between each pair of ones is p —1 +
nq, where n is an arbitrary non-negative integer. Of the

p —1 + nq allowed zeros, p —1 consecutive zeros are
bound to each one while the rest of them are unbound.
The consecutive q unbound zeros represent a hole. (iii) A
cutoff is introduced to make the number of unbound ze-
ros finite. The natural unit for the pseudomomenta is then
27r/qL which is an analog of the flux quantum. To give
some examples, the ground state (a), allowed (b), and for-
bidden (c) states for A = 3/4 for N = 7 are represented,
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respectively, by

(a). . . 00000000100100100100100100100000000.. .

(b). . .00000000100100100100100100000010000. . .

(c). . . 00000000100100100000100100100100000.. .

The motif (c) violates rule (ii) and hence not allowed. The
bound zeros which cause spacings between the ones can
be viewed as flux attached to the pseudoparticles.

The motif thus constructed is a powerful tool in

visualizing the fractional statistics. Destroying a particle
(or turning a one into a zero) creates p extra unbound

zeros and in order to have integer number of holes in

the condensate [rule (ii)], a minimum of q
—1 extra

quasiparticles must be excited out of the condensate
leaving behind a total of qp unbound z;eros which break

up into p holes. Hence, q particles leave behind p
holes. This is a generalization of the Pauli exclusion
principle which explains intuitively why the density-
density correlation function has q quasiparticles and

p quasiholes when A = p/q. It will be shown explicitly
that the only states that contribute to the DDDCF are
indeed this minimal excitation.

Before I begin to discuss the method used to calculate
the DDDCF, some notations need to be defined. First,
a diagram 23((~) is defined to be rows and columns
of boxes labeled by ((i,j): 1 ( i ( l(~), 1 ( j ( K;),
where l((~) denotes the number of nonzero ~, . The label

i and j are row and column indices of the diagram
with l((~) rows of lengths ~, . Second, the conjugate
of ~ denoted by ~' is obtained from ~ by changing
all the rows to columns in nonincreasing order [15].
Each row (column) corresponds to the quasiparticle (hole)
excitations. Third, a generalization of factorial is defined

by [a]„"=Qi;,(E„[a + (j —I)/A —(i —1)]. Using the

above notations, the density-density correlation function

atfinite N and L is given by

(olp(x, t)p(0, 0)lo) = —,—,g1 2 l(rl' ([0(]~)'[N]"

x cos(2vrl~lx/L)e " ",

where E, = (2m. /L) g, , ir, + Ag, , (N + 1 —2j)x,
and j„" = P(;J(c„[~I —i + 1 + ((~; —j)/(t][K,' —i +
(~; —j + I)/A]. The product in [0']"„does not include

the pair (i, j) = (1, 1). In deriving the finite size correla-
tion function, I use the following two relations [16,17]:

rt K Jl/A

l, &(=n

(12)

(13)

The first relation can be used to expand the reduced den-

sity operator p(x) = (1/L) P, , [B(x —x, ) —1] in terms
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of the Jack polynomial. The second relation gives the
normalization constants of all the excited states param-
etrized by ~. The DDDCF is now easy to calculate
since the eigenstate ~ evolves in time only with a phase
exp( it—E )

For A = p/q, the coefficient [0']' is zero if D(x) con-
sists of more than p columns or more than q rows, Hence,
in the thermodynamic limit a local density operator acting
on the ground state provokes only the minimal excitations
consisting of q and p quasiparticles and holes.

The large N expansion of Eq. (11)can be carried out at.

fixed density p = N/L, and the leading order term corre-
sponding to the thermodynamic limit is given by Eq. (2).
In this limit, a new super selection rule emerges and sup-

presses the states with lK; K(l = O(1) to O(1/N'") or
O(1/N't ) depending on the value of A. This means that

the states with quasiparticles and quasiholes with same
momenta (velocities) are suppressed. There are some ex-
otic exceptions to this rule. The details will be published
elsewhere.

The form of the ground state wave function, Eq. (8),
has lead Haldane to suggest that while the apparent sta-

tistics can be modified with a singular gauge transforma-

tion, the "natural" statistics of the CSM are fractional, and

that the particle excitations carry charge 1 and flux mA

and the hole excitations charge —I/A and flux —m [18].
Indeed, if a singular gauge transformation [19] is applied,
the ground state wave function can be rewritten as

. (-, —-, (l(

()( ( (

where the apparent statistical parameter is now 0 = m P.
Unlike in the two-dimensional case, the transformed wave

function remains as the ground state of the original
Hamiltonian, and so are all the other eigenstates. The
DDDCF is also unchanged. The hole propagator, how-

ever, will be different for different choices of statistics

(see, for example, [20]). Hence, in order to calculate the

hole propagator, it will be necessary to adopt Haldane's

natural exchange statistics for the CSM particles.
In order to consider the fractional exchange statistics,

it is convenient to multiply the wave function %" by
an "ordering function" (ps(x((„. . . , x((, ) which is just a

bookkeeping device for the phase factor that depends on

the braiding B and is set to unity for the fundamental

region xi ( x& ( . ( x(v with no braiding. (In the case
of fermions the function is just a product of Grassmann

numbers. ) Since the ordering function automaticaiiy keeps
track of all the exchange phases, the particle exchange

operator P;, acting on the full wave function amounts to

simply exchanging the indices i and j. If the natural

statistics is chosen, the phases arising from p and W can

always be set to cancel each other.
In the original CSM there is no physical process which

allows particles to exchange (i.e., the wave function

vanishes like lx; —x, i~as x; x, ). A few years ago,
Polychronakos [21] solved this problem by introducing an
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analog of the Yangian generator [4]

vr, = p, + (i+A/. L) gcot[7r(x; —x, )/L]P;, , (15)
l WJ

where pj is the ordinary momentum operator, and showed
that the Hamiltonian H = P, m; is fully integrable and

is same as the CSM up to a modification A(A —P;, )
plus some trivial constant. The new operator vrj is
the momentum operator for the pseudoparticles, and
the momenta g, k, corresponds to the eigenvalues of

This new Hamiltonian should be considered as
the model of one-dimensional anyons with fractional
exchange statistics.

The single particle destruction operation on the ground
state of N + 1 anyons is, then, given by

N

~(x)lo)„, = z-" i' (z —z, )"z, ""lo&,
j=1

where z = exp(i2mx/L). Now, a similar technique used
for the DDDCF can be employed to solve for the
hole propagator. In this case, the contributing partitions
have no more than p columns and q

—1 rows (i.e.,

p quasiholes and q —1 quasiparticles). Therefore, the
natural exchange statistics of the real particles is fully
compatible with the exclusion statistics of the elementary
excitations.

In the thermodynamic limit the one-particle Green's
function (hole propagator) is given by

q-I (
(0)'Irt(x, t)'Ir(0, 0)(0) = pD I

d»;
I dy,

~j='i& o )
X F(q —1,p, A~( ;x, y, ))

i((Q Qo)x —(E y)t)—
where the chemical potential p, = (m Ap)z and the back
flow Qo = m. Ap. F(q —1, p, A~( xy, )) is still given by
Eq. (7) and D by

$2P(v () I'(p)
D = A(q —1, p, A). (18)

Q and E are same as before except for the number of
x, 's. At integer values of A (i.e., q = 1 case where only
quasiholes are excited), based on the equal-time results
of Forrester [22] Haldane made a conjecture [18] which
agrees with this formula. I conjecture that the minimal
form factor for any two-point correlation function is given
by F(m, n, A((x;, y, )) if the intermediate states involve onlyI quasiparticles and n quasiholes.

In conclusion, the CSM is shown to possess the frac-
tional exclusion and exchange statistics. The motifs rep-
resenting the full spectrum are constructed and used
to demonstrate the exclusion statistics, explicitly. The
fractional statistics in the CSM is also confirmed by cal-
culating the exact dynamical density-density correlation
function and the one-particle Green's function (hole prop-
agator) at any rational interaction coupling constant us-
ing the theory of Jack symmetric orthogonal polynomials.
The details of the calculation will be published elsewhere.

While this Letter focuses on the fractional statistics
aspect of the CSM, the method for calculating the

correlation functions developed here could be of interest
to a wide variety of people working on the disordered
electronic system, the quantum chaos, the random matrix

theory, 2D QCD, etc.
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Note added. —After this work was submitted for publi-
cation, some related works came to the author's attention
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