Comment on "Mechanism for Electric Field Effects Observed in $YBa_2Cu_3O_{7-x}$ Films"

In a recent Letter [1], experiments with applied electric fields on YBaCuO films are explained in terms of the effect of the interaction between the local field seen by the basal-plane O ions \mathbf{E}_{loc} and their permanent electric dipole moments \mathbf{p}_i , on the O ordering assumed governed by the asymmetric next-nearest-neighbor Ising (ASYNNNI) model.

I would like to point out that this explanation is unlikely for the following reasons:

(1) The authors, using the Lorentz relation (actually valid for a cubic environment) $\mathbf{E}_{\text{loc}} = (2 + \epsilon)\mathbf{E}_m/3$ and a very large dielectric constant $\epsilon \sim 400$ point out that the local field is ~130 times larger than the macroscopic field \mathbf{E}_m , and assume \mathbf{E}_m of the order of a potential drop of 10 eV over a 100 Å film. However, if $\epsilon \sim 400$, in the experiment [2], most of the potential drop takes place in the 5000 Å thick SrTiO₃ substrate. Taking a dielectric constant ~1000 for SrTiO₃ at 100 K [3], a simple calculation gives $\mathbf{E}_m \sim 5 \times 10^{-3} \text{ V/Å}$. Thus, the interaction $-\mathbf{E}_{\text{loc}} \cdot \mathbf{p}_i$ is too small to affect the O ordering.

(2) If \mathbf{E}_{loc} were indeed of the order of 13 V/Å, the induced O moments \mathbf{p}_{ind} would be much larger than the permanent ones. Using the linear relation $\mathbf{p}_{ind} = \alpha \mathbf{E}_{loc}$ (although not valid for such a huge electric field), $\mathbf{p}_{ind} \sim 3e$ Å is obtained [4]. Moreover, a field of this order of magnitude should have dramatic consequences on the conductivity (electric breakdown [5]).

(3) The analysis of the resistivity is based on Eq. (3) of Ref. [1], which assumes that fourfold and threefold coordinated Cu ions have charge +2 while twofold coordinated ones are Cu⁺. This might be a reasonable hypothesis in the ionic limit, but is incorrect when covalency is taken into account [6]. A quantitative estimate of the number of holes in the superconducting planes can be given only by a many-body calculation of the electronic structure.

(4) On general physical grounds one expects that the number of threefold coordinated ions given by the ASYNNNI varies exponentially with V_2/T . A recent calculation gives $n_3 \sim \exp(2V_2/T)$ [7]. Thus, for T =100 K $n_3 \sim 6 \times 10^{-4}$, and according to Ref. [7] $n_3 =$ 0.015 at 200 K. This means that the ASYNNNI predicts an almost perfectly ordered structure at low temperature and no decrease of the resistivity as a consequence of O reordering is possible, unless one starts from a metastable state. This state, however, implies low mobility of the O ions and a dependence on the preparation method which contradict the authors' hypothesis. In addition, the resulting exponential temperature dependence of the hole concentration contradicts experiment.

(5) It is very unlikely that a photon of energy 1.9 eV displaces an O atom. In an elastic collision, the maximum speed that the latter can gain is $v \sim 8 \text{ cm/s}$ and the maximum possible O displacement is of the order of v times an average of the inverse of the O phonon frequency, i.e., less than 10^{-4} Å. The observed persistent photoconductivity [8,9] is most noticeable for oxygen lean samples, near the insulator-metal transition. For these samples there is experimental [10] and theoretical [6,11] evidence that $V_2 > 0$ and the system does not order in "chain" structures (CS) but in nearly "hexagonal" structures (HS) with regularly spaced O atoms. A possible interpretation of the experiments is that illumination promotes carriers to the superconducting CuO₂ planes, lowering at the same time the resistivity and the screening length. The latter fact destabilizes the HS and the O atoms tend to form chains [6]. When illumination ceases, the O atoms build again the HS, which is stable and semiconducting. Note that if the stable structure were a CS, the increase of the resistivity after ceasing the illumination could not be explained. Well inside the metallic phase, the effect can be explained in terms of CS but with a significant n_3 which is reduced by illumination [9]. This requires either positive or small V_2 , in agreement with Refs. [6,11].

I am grateful to Dr. E. Osquiguil, Dr. J. Guimpel, and Dr. Gladys Nieva for useful discussions. I am partially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.

A. A. Aligia Centro Atómico Bariloche 8400 Bariloche, Argentina

Received 2 February 1994 PACS numbers: 74.72.Bk, 74.76.Bz

- N. Chandrasekhar, O. T. Valls, and A. M. Goldman, Phys. Rev. Lett. 71, 1079 (1993).
- [2] J. Mannhart et al., Phys. Rev. Lett. 67, 2099 (1991).
- [3] T. Mitsui and W.B. Westphal, Phys. Rev. **124**, 1354 (1961).
- [4] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976).
- [5] N.W. Ashcroft and N.D. Mermin, *Solid State Physics* (Holt, Rinehart and Winston, New York, 1976).
- [6] A. A. Aligia and J. Garcés, Phys. Rev. B 49, 524 (1994).
- [7] V. M. Matic, Physica (Amsterdam) 211C, 217 (1993).
- [8] V.I. Kudinov *et al.*, Phys. Lett. A **157**, 290 (1991);
 G. Nieva *et al.*, Phys. Rev. B **46**, 14 279 (1992).
- [9] E. Osquiguil et al., Phys. Rev. B 49, 3675 (1994).
- [10] R. Sonntag et al., Phys. Rev. Lett. 66, 1497 (1991).
- [11] A.A. Aligia, Europhys. Lett. 18, 181 (1992); 26, 153 (1994).