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Lattice Contraction Driven Insulator-Metal Transition in the d = ~ Local Approximation
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We study the effects of lattice contraction on insulator-metal transitions in strongly correlated
systems, in the context of the d = ~, iterated perturbation theory approximation for the half-filled
Hubbard model. We compute the phase diagram in the pressure-temperature plane for the paramagnetic
metal to paramagnetic insulator transition. We present results for conductivity jumps across the
transition and for the variation in conductivity with pressure and temperature in either phase. Our
results agree qualitatively with experimental data on transition metal oxides.

PACS numbers: 71.27.+a, 71.10.+x, 71.28.+d, 74.20.Mn

The phenomena associated with correlation induced
metal-insulator (M-I) transitions, such as in transition
metal oxides, have now been known for many decades
[1,2]. However, a detailed and quantitative understanding
of these has remained elusive, in spite of enormous
theoretical effort [1,2], because of the difficulties in
solving the strongly correlated electron problem that
is at the root of these phenomena. Recently there
has been exciting progress on this latter front because
of the development of the infinite-dimensional, local
approximation [3—8]. In the light of these developments,
in this paper we reexamine lattice contraction effects in
correlation induced M-I transitions. Such effects have
been looked at earlier [9] only in the context of the
Hubbard (III) approximation [10].

Specifically, we show that systems described by purely
electronic models with strong correlations, such as the
Hubbard model at half filling, are intrinsically unstable
with respect to lattice contraction effects. Such instabili-
ties lead to a first order transition from the para insulator
to a para metal at temperatures below a critical tempera-
ture T„but above the purely electronic M-I transition
temperature T*. Using the iterated perturbation theory
(IPT) approach pioneered by Georges and Kotliar [4],
we present the first detailed study of such transitions, in-
cluding the calculation of conductivity jumps across the
transition.

The compressional instability of the model (conduction)
electronic systems alluded to above arises due to the
dependence of Q„ the thermodynamic (grand) potential
of the tnodel, on the bandwidth parameter D(v), which is
typically a strong function of the unit cell volume v. The
compressibility is given by

B2Q, &BQ, ) &B2Dlt &B2Q, &BD)
Bv & BD J &Bv j & BD &Bv j

Typically, B2D/Bv2 is positive [11], and BQ,/BD and
B Q, /BD are negative (cf. Fig. 2 and calculations be-
low), hence a, ( 0. In the real physical system, there
is a positive contribution to the compressibility, K~, com-
ing from the volume dependence of the site energies

of the conduction electrons, the other (core) electrons,
and from the ions, such that at high temperatures N„, =
tr, + trt ) 0 and the system is stable. However, at low
temperatures ~~, ) becomes very large and may even di
verge as T - T'and D -. D*. For example, in the
IPT approach K, diverges at T* = 0.05D*, D* = 0.33U
for the following reasons. Below T* there is a first
order M-I transition, with both metallic and insulating
solutions to the IPT equations (see below) existing [8]
inside the solid line in the inset of Fig. 1. Across this tran-
sition the momentum distribution function (nk) changes
abruptly, from a Fermi-liquid form on the metallic side
to a smooth function of ek on the insulating side; hence
DBQ, /BD =—(Ek;„) (where Ej,;„ the kinetic energy of the
conduction electrons) changes discontinuously across the
M-I transition as shown in Fig. 2. As T = T* from be-
low the discontinuity in BQ, /BD decreases, leading to
a divergence of B2Q, /BD2 at T*. The same divergence
in B'Q, /BD2 and consequently in a, will show up asT:T* from above, as indicated in the inset of Fig 2.
Hence t~„, can become negative in the region D(v) =
D* below a critical temperature T, () T*). This is an
unstable condition which the physical system avoids by
generating a first order M-I transition accompanied by a
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FIG. 1. P Tphase diagram c-omputed for K, vo/Do = 6.0.
Inset: Discontinuity in bandwidth across the transition. The
solid line indicates the limits of metastability in the purely
electronic scenario, while the dashed line denotes the boundary
of coexistence in the presence of lattice coupling.
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cies] and interaction U as in (2). From the Dyson equa-
tion, the full local propagator is

G '(ice„) = g '(ice„) —X(i~„), (3)
where the self-energy X(ice„) is some functional of
Q(ice„) and of U, e.g., as given by the perturbation
series in powers of U [13]. The connection to the
lattice problem is made via the self-consistent embedding
condition: The impurity self-energy is the same as the
lattice self-energy (the local d = pp approximation which
neglects the momentum dependence of X), and the full G
is the local band propagator

FIG. 2. aA, /aD for T (T', U =3.0. Inset: BA, /BD for
T = 0.06 ~ T*, indicating a sharp crossover.

with p, = U/2 ensuring half filling. In the local approx-
imation the spectral properties are determined from the
solution of a self-consistently embedded impurity prob-
lem which involves a single site electronic degree of
freedom with a retarded "bare" local propagator g(ice„)
[co„= (2n + 1)m.T are the fermionic Matsubara frequen-
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FIG. 3. Conductivity ratio across the transition for
K~ vp/Dp = 6 (1), and 8 (2). Inset (a): Variation in p
with P at fixed T, close to T, . Inset (h): Variation in p
with 1/T for various P (from the lowest curve up Pvp/Dp =
0.38, 0.32, 0.29, 0.27, 0.24, 0.19).

discontinuous volume change straddling the unphysical
region where ~„, ( 0, as shown in the inset of Fig. 1.
The transition is accompanied by sharp changes in the
electronic spectrum and the transport properties of the sys-
tem, as indicated by the conductivity jumps across the
transition shown in Fig. 3.

For the detailed quantitative study of the M-I transition
scenario outlined above, leading to the results in Figs. 1—
3 for the half-filled Hubbard model, we have relied on
the d = pp local approximation in the IPT scheme [12].
The approximation has been well detailed and motivated
elsewhere [8]. We use the Hamiltonian

H = —g(t;, + p, B;J)c; c, + Ugn;rn;1 (2)

G(. ) G (. )
kPO( k)

l QJ„+ p, ek X(l CO„)
~ ~ ~

(4)

Here pp(e) is the noninteracting band density of states
(DOS) and D its half bandwidth.

The bottleneck in the whole d = pp local approximation
program is the problem of calculating the impurity self-
energy X(ice„) given an arbitrary bare propagator Q'(iru„)
In the IPT scheme, one approximates X by the leading
nontrivial perturbative term [13]

X(ice„) = U d7e' "'Q3(r) +—
0

where g(~) = P 'g„Q'(iru„)e ' "', as usual. For
concreteness we use this in the context of the semicir-
cular DOS pp(e) = (2/n. D)gl —(e2/D2) whence the
self-consistency condition (4) becomes

- —1

G(ice„) = 2 z„+ z2 —D2

z„= ice„+ p, —X(ice„). (6)

We solve the set of equations (3), (5), and (6) numeri-
cally in the Matsubara formulation by a simple itera-
tive scheme, as well as directly in the real frequency
domain (by a procedure discussed below). Thermody-
narnic properties are computed from G(ice„) and X(ice,)
at convergence for a particular parameter set (U, D, T),
while the dc conductivity is calculated using the real-
frequency objects.

Although there exist formulas relating the thermody-
namic potential Q, to G(i co„) and X(ice„),we have found
it far more convenient to compute BQ, /BD directly as fol-
lows. Writing the kinetic energy part of (2) as D times a
dimensionless form, it is easy to see that D(BQ, /BD) =

ek(nk ) Using (nk ) =. p ' L G (k, ice„) and the
local approximation to the self-energy, one gets for the
semicircular DOS

2 z. —Qz„2 —D'
DP ~z + Qz2 D2

We compute BQ,/BD for a discrete set of D values be-
tween 0.1 and 10, closely sampled in the crossover region
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D = 1.0 where the IPT gives rise to a M-I transition
[cf. Fig. 1]. U is fixed at 3.0 and sets the energy scale in
the problem. As noted before [8] the IPT scheme admits
metastable solutions in the crossover region (D = 1.0,
T ( T = 0.05). The metastable solutions are generated
by starting deep in the metallic-insulating state and feed-
ing in the converged X(ice„) from one parameter set as
starting self-energy for the iterations for the next set. The
true BQ,/BD curve is obtained by tracking both solu-
tions in the crossover region and determining the transi-
tion point by comparing the corresponding free energies.
Figure 2 shows the variation in BQ, /BD for an insu-
lating and metallic solution in the crossover region and
for the actual transition between these solutions. Above
T' = 0.05 there exists only one solution of the IPT equa-
tions as we scan in D at fixed U and T. For T & T*
the variation in BQ,/BD with D is continuous but very
sharp in the crossover region (see inset in Fig. 2), lead-
ing to a large negative B2Q, /BD2 as discussed earlier.
The crossover in BQ,/BD (which naturally couples to the
lattice in our scenario) shifts to larger D with increasing
temperature, much beyond T'.

Next we couple in the lattice by introducing a volume
dependence of D of the form D(v) = Dpexp[ —y(v-
vp)/vp) (we set Dp = 1.0, the reference value) and an
energy cost for lattice deformation of the form E(v) =
2&el(v

—vp) . Then one gets, by the mechanism outlined
earlier, a first order M-I transition below a critical tem-
perature T, determined by ~1 and y. v; and v, the spe-
cific volumes on the insulating and metallic side of the
transition, respectively (and D; and D the corresponding
bandwidths), are fixed by the standard Maxwell construc-
tion. In terms of the Gibbs free energy

G(P, v) = P(v —vp) + Q, [D(v)] + IJ + E(v) (8)

one has the following conditions: (i) G(P, v;) = G(P, v )
and (ii) (BG/Bv)„,. = (BG/Bv)„. = 0 from which v; and
v can be computed. The volutne jump v; —v becomes
smaller as T increases above T' and vanishes at the
critical point T, determined by the additional condition
B'G/Bv' = 0. For the choice of parameters y = 2 and
Kivp = 6 which we have studied in detail, T, = 0.075.
The phase diagram and the jumps in D computed in this
scheme are shown in Fig. 1.

We next discuss the transport properties, specifi-
cally the conductivity jumps, across the first order M-I
transition. For computing these, we found that the
Matsubara frequency formalism discussed above is not
so convenient (although the IPT equations converge
easily because the functions involved are not singular),
because of the well known problems [14] of analytic
continuation to real frequencies. Hence to compute
frequency dependent correlation functions we have set
up and solved the IPT equations directly for the spectral
functions (at both zero and finite temperature). From
(5) we can write down an equation for the spectral

function of X, px —= —m 'ImX(co+), directly in terms
of the spectral function of g, pg —= —m. 'Imp(co+).
We use this equation, the Kramers-Kronig expression
for X„, namely P„(cu) = —f des'px(cu')(co —cu') ', the
real frequency versions of the Dyson Eq. (3), and the
consistency condition (6), to achieve self-consistency.
The dc conductivity is calculated as [15]

~dc ~ODp de&pt e& dc@A k, co +F u
&co

Here p~p(el, ) is a "transport DOS" which in the d = ~
limit essentially reduces to pp(ek) [15], and o.p is a
constant with dimensions of conductivity whose value
[typically [15] 10 2 to 10 3 (~Q cm) '] depends on the
details of the modeling of the conduction electrons (i.e.,
on material parameters, band structures, etc.). A(k, cu) is
the spectral function

A(k, co) —= —m
' 1m[co + p, —ek —X(cu)] . (10)

Vertex parts are local [16] in the d = ~ approximation,
and hence vertex corrections completely drop out of the
dc conductivity because of the odd parity of the veloci-
ty vertex (with respect to momentum) [17]. The con-
ductivity ratio computed at various pressure, temperature
values along the M-I coexistence curve is shown in
Fig. 3 for two representative values of Kivp. In the in-
sets of Fig. 3 we also show the variation of the resis-
tivity (o.p/o. ) with P for a fixed T (a), and with 1/T
for various values of P (b), across the M-I transition.
We note that the conductivity in the insulating phase
is dominated by activated transfer between the Hubbard
bands and at low temperature (T ( 0.03) can be com-
puted quite accurately using the zero temperature spectral
functions.

It is worth comparing our results with the experimen-
tal data on the (V& „Cr,)203 system which has been ex-
tensively studied [18—22]. Specifically we focus on its
paramagnetic M Itransition occurri-ng at intermediate
(200—400 Kj temperatures, which has almost a con-
stant positive slope, dT/dP = 50 K/kbar. [Within the
IPT one cannot as reliably study the antiferromagnetic
(AF) phase or the para metal to AF insulator transition
which is much more spectacular. ] The high-pressure-
low-temperature phase (above the AF transition) is metal-
lic, while the low-pressure —high-temperature phase is
insulating. The measured volume jumps across the tran-
sition [18]are typically 1%, except as T -. T, ; hv/v =
0.013 at T = 200 K. The corresponding s; —s, ob-
tained using the Clausius-Clapeyron equation, is = 0.14.

Clearly, our phase diagram, Fig. 1, is qualitatively
consistent with these data. However, the typical T, 's we
get with Dp = 1.0 eV, and indeed T* itself, are larger

2than the observed T, . The hv/v for Kivp = 6.0 is
typically much too large (= 3% at T = T,/2), but can
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be made smaller by choosing larger K~vp values which
also reduce T, . Our calculated value for a typical entropy
jump (at T = T, /2 for Ktrjp = 6.0) is s; —s = 0.21,
somewhat larger than the experimental value. In the
para insulating phase, the d = ~ approximation neglects
the interaction between spin fluctuations [1;, = t;, /U =
(1/d)D2/U]; hence their contribution to the entropy
would be overestimated. The resistivity ratio across the
transition in the V203 system is typically 2—3 orders of
magnitude [19,20] and drops sharply as T:T, in a
way similar to Fig. 3. The observed variation [20] of
p with P at constant T, and with 1/T at constant P, is
qualitatively similar to the insets (a) and (b) in Fig. 3.
However, in the experimental data, p in the metallic
phase is predominantly T independent, due to disorder
effects; though a component varying as aT2 (with a =
0.03 —0.04 p, A cm/K2, and increasing as P decreases)
has been identified [19]. Our calculations for the metallic
resistivity [inset (b) in Fig. 3] have no disorder component
and do vary as aT, with a increasing as P decreases. A
typical value for a is = (1.6 X 10 4/oo)p, Q cm/K2. If
one takes trrr = 0.5 X 10 2 (p, Q cm) ' [in the middle of
the range 10 2 —10 3 (IzQ cm) ' mentioned earlier] one
gets a = 0.032 p, Q cm/Kz, in the right range.

In conclusion, we believe that the mechanism out-

lined here is responsible for the first order paramagnetic
M-I transitions observed in transition metal oxides. The
quantitative results are limited partly by the IPT scheme,
and by the d = ~ approximation, not to mention the lim-

itations of the Hubbard model itself and the neglect of
disorder and electron-phonon scattering effects. We hope
to look at some of these issues in future work.

We thank T.V. Ramakrishnan, B.S. Shastry, A. K.
Raychaudhuri, and D. M. Gaitonde for discussions and

the Supercomputer Education and Research Center, Indian
Institute of Science, for providing computational facilities.
H. R. K thanks G. Kotliar for discussions regarding the
IPT.

Note added Are.—cent preprint by G. A. Thomas
et al. [23] on optical conductivity measurements in V203
suggests that the d = ~ approach to the Hubbard model

coupled with lattice effects could be a reasonable starting

point for describing V203. They extract a bandwidth

Dn ——OA eV, which brings our T, value = 0.08Dp in

closer correspondence with experiments.
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