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We propose a simple Langevin equation that describes the growth of pyramidlike structures on a
surface under conditions typical of molecular beam epitaxy. The slope of these pyramids is selected
by the crystalline symmetries of the growing film. By analogy with the problem of domain growth of
systems with a conserved order parameter we show that the dynamic exponent that controls the growth
of the pyramids is z = 4. There is no mechanism that limits the size of the growing structures. This
implies that the roughness exponent is @ = 1, in agreement with recent experiments.
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Films grown by deposition processes in which surface
diffusion is the dominant relaxation process reveal a
surprising variety of surface morphologies [1]. The
nonequilibrium growth process leads in some cases to
scale invariance of the correlation functions, but in other
circumstances to instabilities, which manifest themselves
in pyramidal structures. A theoretical description of these
scenarios is aimed at a better understanding of molecular
beam epitaxy (MBE), which has become an important
technique for the growth of thin films.

In this Letter we present a theory for growth under
MBE conditions for systems that have potential barriers
near step edges that suppress the diffusion of adatoms
to a lower terrace. This effect, now commonly called
the Schwoebel effect, was first studied experimentally by
Ehrlich and co-workers [2] and was later investigated
theoretically by Schwoebel [3]. In his seminal paper,
Villain [4] illustrated the importance of this effect for
MBE growth on high-symmetry surfaces and pointed out
that it gives rise to instabilities, which since have been
observed in experiments [5—7]. The temporal evolution
of these instabilities is the subject of this Letter.

In MBE the height # describing the local position of the
moving surface obeys a conservation law [1,4],

dh(r,t) = =V - j[VAa(x, )] + n(r,1), 0

where 7 is the shot noise due to the fluctuations of the
incoming particle beam, and the height is measured in a
comoving frame of reference. We first recall [4,7] the
form of the contribution j, to the surface current due to
the Schwoebel effect. Let us assume for the moment that
no adatom on a vicinal surface can overcome the barrier at
downward steps and therefore all adatoms remain on the
terrace on which they have been deposited. If the terrace
size [, is smaller than the diffusion length I, basically all
adatoms reach the step edge of the upper terrace where
they are incorporated into the substrate. This results in an
uphill current j;(m) ~ 1/m, where m = 1/1 is the tilt of
the vicinal surface. This is the so-called step-flow regime.
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If the terrace size is larger than /; only the adatoms
within a distance /; of the upper terrace will reach that
step, creating a depletion zone in its neighborhood. Only
this fraction of all adatoms contributes to the current j;.
All other adatoms form islands on the terrace and the
corresponding currents average to zero. Thus, the current
Js(m) ~ 13/l = l;m has a positive derivative j'(m) for
small m and this leads to the instability discussed by
Villain [4]. The crossover between the two regimes
occurs when [ is of the order of the diffusion length /,.

Recently, Johnson et al. [7] proposed a simple analytic
form for the current that interpolates between the two
regimes,

jstm) ~m/[1 + (I;m)*]. )

The corresponding Langevin equation for the morpho-
logical evolution of the surface in MBE growth is fun-
damentally different from usual equations for kinetic
roughening: The growth process is similar to problems
of pattern formation and coarsening [7-9]. In fact, Krug,
Plischke, and Siegert [10] showed for various models that
the surface current has the form (2) if Schwoebel bar-
riers are present. However, although this form of the
current is correct for early times as long as the slopes
are much smaller than 1, it is too restrictive to describe
the unstable three-dimensional growth of real materials
in the late time regime. The arguments which led to
Eq. (2) are based on currents on vicinal surfaces and
there is no reason why (2) should be valid for inclina-
tions m of order 1. We will see below that the cur-
rent j; necessarily drives the surface into a regime with
m > 1. To derive a more general form it is useful to
express the current (2) in terms of the angle of inclina-
tion ¢ of the surface with respect to the unstable sin-
gular surface: j(9) = |js(9)| ~ tan 9/[1 + (I;tan 3)?].
From this expression it is clear that j (%) is periodic in &
with period 7. In other words, the crystal that is grow-
ing has only one high-symmetry surface corresponding to
4 = 0. Thus, we see that if we wish to model the current
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for a structure with, e.g., cubic symmetry we may use
Js(m) ~ 3tan(29) /{1 + [3 lstan 29}
or
ism) = D,m( = m) /[(1 = m)’ + Um]. (3)

In the step-flow regime the current |j;| = F/m, thus,
D, = FI3 [4,7]. This current is properly equal to zero
on the two high-symmetry surfaces ¥ = 0,7 /2 and,
moreover, is also equal to zero at the intermediate
inclination ¢ = /4 or m = my = 1. The generalization
for other lattices is straightforward. We note that the
form (3) still has the correct physical behavior: j; ~ m
form < 1/l; and j; ~ 1/m for 1/l; < m < 1. Despite
these similarities (3) gives rise to a completely different
behavior than the current (2) as will be shown below.

Certainly, Eq. (3) is not exact [11]. It merely gives
an interpolation formula that takes into account the
occurence of a zero in j; and the requirements of
the Schwoebel effect. High-symmetry surfaces like the
{110} surfaces in a cubic crystal cannot be consistently
described as vicinal to other surfaces [10,12]. Rather the
symmetries require that the current j, is zero for such
orientations m = my. If j'(mp) < 0 the homogeneous
solution m(r) = myg is stable and mg turns out to be the
selected slope of the evolving surface pattern (see below).
If j'(mp) > O there has to be another zero j(sy) = 0
with 0 < my < my and j'(mp) < 0 because j, has to be
a continuous function of the tilt angle J. From this it
is already clear that mp = 1 is not necessarily the only
zero of the current j;. There are many processes, e.g.,
knockout effects [12], which lead to downhill currents
that can overcompensate the Schwoebel current for large
enough slopes [9]. The selected slope is given by the
smallest zero of j;(m) with my > 0. From this point of
view Eq. (3) is a minimal model: j;(m) must have at least
one zero between 0 and ©. The exact form of j;(m) does
not play a role. The slope selection mechanism and the
growth exponents to be described below do not depend on
such details.

The total surface current j is the sum of j, and
the equilibrium surface current jo.q = DqVAh, where the
coefficient D.q is proportional to the surface stiffness
[1,13]. Eq. (1) is readily transformed into an equation for
the tilt,

om = —VV - ji(m) — DegAAm + V7, (4)

where we have used the fact that V. X m = 0. For one-
dimensional surfaces Eq. (4) is equivalent to the equation
of motion of a conserved scalar order parameter in
spinodal decomposition [9,14,15] as was already noted
by Krug, Plischke, and Siegert [10]. Consequently,
“domains” with m = +mg and m = —mg are formed and
the size of the domains grows with time as ¢!/3 [16], the
well-known Lifshitz-Slyozov law. It is illuminating to
notice the difference in the dynamical behavior resulting
from the current (2): In that case the “free energy,”
F =~ [dm j(m) ~ —In(1 + I3m?), has minima only
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at my = *o. Therefore, the slope of the emerging profile
does not saturate and deep grooves develop. This explains
the results of earlier theories [17] and simulations [18].
Note that while true domain growth does not exist in one
dimension, since an equilibrium free energy cannot have
two degenerate minima, this argument does not apply
here: The current j; is a nonequilibrium contribution,
which vanishes if the flux F goes to zero. Thus,
its integral can have a double minimum even in d =
1 and this type of Lifshitz-Slyozov behavior may be
observable in the step-flow regime as an instability of the
step edge.

We now turn to the two-dimensional case. The equilib-
rium term in (4), D,qAAm, has the usual form for order-
ing dynamics of a vector order parameter m. However,
the same is not true for the first term on the right hand
side of (4), even if j, = 8 F/ém and, of course, there
is no guarantee that this current will be derivable from
a free energy. In this Letter we restrict ourselves to the
case where j, is derivable from a free energy and will
discuss the general case in a longer publication. We will
show that the dynamical evolution of the surface can be
described analogously to the theory of domain growth for
a conserved order parameter. The stable solutions for the
order parameter in the domain growth problem correspond
to the stable surface orientations that are determined by
the zeros of the current j; in the present case.

Bray’s theory of phase ordering [15] relates the
dynamical exponent z = d + 2 — y to the energy E(L)
of an elementary excitation in a system of size LY,
E~L¥ Thus, y=d—1 and z =3 for a scalar
and y =d — 2 and z = 4 for a vector order parame-
ter. The exponent y is easily determined as one only
needs to solve for the steady-state solution with an-
tiperiodic boundary conditions. For the current (3) we
obtain DegAm + Dymf(m?) = 0, with j; = D;mf(m?).
This equation is completely equivalent to that of an
n-component vector order parameter with n =2 (XY
model). But there is an important difference between the
slope m and the order parameter of an XY model: The
slope must obey the constraint V X m = 0 and this may
slow down the dynamical evolution.

We have numerically integrated Eq. (1) for the cur-
rent (3) with n = 0 since noise is known to be irrele-
vant for the ordering process [15,19]. To classify the
growth law we determined the first zero ry of the order-
parameter correlation function C(r,f) = L™¢Y (m(r +
x,t)m(x,?)). This function has been successfully used
to determine the scaling behavior of the domain size in
the XY model [19] and in the one-dimensional case [1].
Figure 1 shows an almost perfect power law ro(z) ~ /2
with z = 4, that is in agreement with the renormali-
zation group theory [15] for vector order parameters.
But recent theories [20] show that the usual theories of
phase ordering cannot be applied to the two-dimensional
XY model because of the long range correlations be-
tween vortices. Numerical simulations [21] indeed show
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FIG. 1. Time dependence of the first zero ro(r) of the slope-
slope correlation function. The lines are power law fits with
an exponent 1/z = 0.25. The system size is L? = (128Ax)?
with a mesh size of Ax = 2. The parameters [; = 10, Dq = 1,
D, = 2 have been used in both cases.

deviations from the r'/* behavior that are not seen in
Fig. 1. Whether this can be attributed to the effects of
the constraint V X m = 0 is unclear.

The current (3) is a simplification in the sense that
it neglects in-plane anisotropies: For cubic symmetry j;
only has to be periodic with a period of 7 /2 for rotations
around the [100] and [010] axes, whereas (3) has this
symmetry for all axes lying in the x-y plane. Thus the
above results are valid only on time scales for which such
anisotropies in the diffusion current can be neglected.
In the more general case we consider a current with
components j;. = myf(m?2) and j;, = m,f(m?) with the
same function f defined above. The corresponding “free
energy” is simply F = — [dm, j,. — [dm, j,,. Thus,
it has minima at m = (=1, *1) instead of m = (*1,0)
and m = (0, *1) as required. This is easily repaired by a
coordinate transformation. The current with components

Jsx = Dy[(my + my)f((my + m,)?)
+ (my — my)f((mx — my)?)],
Jsy = Dl(my + my)f((my + my)?)
= (my = m)f((mx — m)M], (5

has all the required symmetries and still has the correct
physical properties. Since this free energy has only
four discrete minima, we expect “domain growth” as in
spinodal decomposition, i.e., z = 3 and a Lifshitz-Slyozov
law ro(z) ~ £'/3.

We have numerically integrated Eq. (1) with periodic
boundary conditions using the current (5) with f(x) =
(1 — x)/[(1 = x)* + I3x] both with and without noise, for
a number of values of ;. Our result for the first zero
ro(¢)of the slope-slope correlation function for the current
(5) is included in Fig. 1. In Fig. 2 we show topographic
maps of the surface at an early stage of the domain growth
and at the final time. The square shape of the domains
is clearly seen. The orientation of each of the facets is
one of the four available [110] facets. Figure 3 shows
the actual surface configuration, which corresponds to the
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FIG. 2. Contour plots of the height A(r, t) for the current (5)

at (a) t = 4.65 X 10* and (b) ¢+ = 10°. Same parameters as in
Fig. 1, and (n?) = 1.

time ¢ = 4.65 X 10*. For the time regime we have been
able to integrate the Langevin equation (see Fig. 1) we
obtain a growth law ro(t) ~ t'/4, i.e., the same as for
the current (3), although we expected Lifshitz-Slyozov-
like behavior. To study this problem further we also
integrated Eq. (4) using the current (§) with f = 1 — x. If
the two operators in front of j, in Eq. (4) are exchanged the
equations for the two components of the order parameter
are completely decoupled and the problem is equivalent
to spinodal decomposition for which z = 3 is obtained
[22]. In the present case the two components are coupled
through the dynamics and we again obtain z = 4 [9]. We
are forced to conclude that the constraint V X m = 0 is
indeed relevant and leads to a slower growth in comparison
with the corresponding domain growth problem. Liu and
Metiu [23] have integrated an equation similar to Eq. (4)
but in a different context. Their result is in agreement
with ours.

1519



VOLUME 73, NUMBER 11

PHYSICAL REVIEW LETTERS

12 SEPTEMBER 1994

25

FIG. 3. Surface plot corresponding to Fig. 2(a).

An important result of these calculations is that there
is no wavelength selection in this form of the theory: In
an infinite system the pyramids would continue to grow,
whereas in a finite system the profile saturates when only
a single pyramid remains. Instead, our theory predicts
a selection of the slope, which corresponds to the order
parameter in the domain growth problem. Therefore,
the height and the base of the pyramids grow in the
same way. Thus, we conclude that the exponent o that
characterizes the roughness of the surface is « = 1. This
is consistent with recent experimental results [6]. The
exponent 8 = a/z describing the growth of the pyramids
is equal to 1/z. These results follow directly from the fact
that there is only one length scale and therefore only one
exponent z in the theory of domain growth in contrast to the
conventional theories of surface roughening, which contain
two independent exponents, « and z. We emphasize,
however, that these latter theories do not apply in the case
of instabilities, since the surfaces are no longer self-affine
and the usual scaling laws for kinetic surface roughening
are not valid [1,18]. In our case the exponents a and
B are only effective exponents; they do not describe the
scaling of, e.g., the height-height correlation functions.
Furthermore, the hyperscaling relation z = 2a + d is not
necessarily valid as has already been shown for instabilities
in one dimension [1]. We emphasize that our theory quite
naturally limits the surface roughness to @ = 1 even in
the case of an instability. In d = 1 this roughness is in
fact smaller than the one obtained for models without an
instability [1,24,25], which are no longer consistent with
the solid-on-solid assumption.

We predict, on the basis of our simulations that an
exponent B8 = a/z = 1/4 will be found. In [6] the
unstable homoepitaxial growth of Cu was studied at two
different temperatures and the exponent 8 was determined
to be 8 = 0.26 or 0.56, at least in partial agreement with
our prediction. More experimental and theoretical work
will be needed to clarify this situation further.
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ful conversations. This research was supported by the
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the NSERC of Canada.

1520

[1] M. Siegert and M. Plischke, Phys. Rev. E. 50, 917 (1994).

[2] G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44, 1039
(1966); S.C. Wang and G. Ehrlich, Phys. Rev. Lett. 70,
41 (1993).

[3] R.L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682
(1966); R. L. Schwoebel, J. Appl. Phys. 40, 614 (1969).

[4] J. Villain, J. Phys. I (France) 1, 19 (1991).

[5] M. Bott, T. Michely, and G. Comsa, Surf. Sci. 272, 161
(1992).

[6] H.-J. Emst, F. Fabre, R. Folkerts, and J. Lapujoulade,
Phys. Rev. Lett. 72, 112 (1994).

[71 M.D. Johnson et al., Phys. Rev. Lett. 72, 116 (1994).

[8] A.W. Hunt et al., in “Scale Invariance, Interfaces, and
Non-Equilibrium Dynamics,” edited by A.J. McKane,
Proceedings of the NATO Meeting in Cambridge 20-30
June 1994 (to be published).

[9] M. Siegert, in “Scale Invariance, Interfaces, and Non-
Equilibrium Dynamics” (Ref. [8]) .

[10] J. Krug, M. Plischke, and M. Siegert, Phys. Rev. Lett. 70,
3271 (1993).

[11] In principle, the right hand side of Eq.(3) has to
be multiplied by a factor cosd: The current j, is
proportional to the adatom density [4], which in turn
is proportional to the flux F = Fcosd that reaches
the sloped surface. In fact, the incoming particle beam
breaks the symmetry, which is implemented in Eq. (3)
and one can think of additional factors, that do not have
the same periodicity. Since we only require j;(6) to have
a zero for some finite slope, these factors do not add any
new qualitative features to the equation.

[12] D.D. Vvedensky, A. Zangwill, C.N. Luse, and M.R.
Wilby, Phys. Rev. E 48, 852 (1993).

[13] W.W. Mullins, J. Appl. Phys. 28, 333 (1957); in Metal
Surfaces: Structure, Energetics and Kinetics (Am. Soc.
Metals, Metals Park, OH, 1963), p. 17.

[14] A.J. Bray (to be published); J.S. Langer, in Solids far
from Equilibrium, edited by C. Godréche (Cambridge
University Press, Cambridge, 1991).

[15] A.J. Bray, Phys. Rev. Lett. 62, 2841 (1989); Phys. Rev.
B 41, 6724 (1990).

[16] T. Kawakatsu and T. Munakata, Prog. Theor. Phys. 74,
11 (1985).

[17] 1. Elkinani and J. Villain, Solid State Commun. 87, 105
(1993); J. Phys. I (France) 4, 949 (1994).

[18] M. Siegert and M. Plischke, Phys. Rev. Lett. 68, 2035
(1992).

[19] M. Siegert and M. Rao, Phys. Rev. Lett. 70, 1956 (1993).

[20] A.J. Bray and A.D. Rutenberg, Phys. Rev. E 49, R27
(1994).

[21] M. Mondello and N. Goldenfeld, Phys. Rev. E 47, 2384
(1994).

[22] T.M. Rogers, K.R. Elder, and R.C. Desai, Phys. Rev. B
37, 9638 (1988).

[23] F. Liu and H. Metiu, Phys. Rev. B 48, 5808 (1993).

[24] D.E. Wolf and J. Villain, Europhys. Lett. 13, 389 (1990).

[25] J.G. Amar, P.-M. Lam, and F. Family, Phys. Rev. E 47,
3242 (1993).



2567

(a)

1921

1281

641

0 64 128 192 256

1921

128;

641

0 64 128 192 256
FIG. 2. Contour plots of the height A(r,¢) for the current (5)

at (a) 1 = 4.65 X 10* and (b) ¢+ = 10°, Same parameters as in
Fig. 1, and (%) = 1.



FIG. 3. Surface plot corresponding to Fig. 2(a).



