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Collisionless Dynamo
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Electron inertia is shown to dramatically impact the generation of a magnetic field by a flowing
collisionless plasma. The rate at which magnetic field energy is created by the flow remains large as the
magnetic Reynolds number R 00, for both chaotic and nonchaotic flows. Importantly, a continuous
nonchaotic laminar flow generates a magnetic field in a collisionless (zero collisional diffusion) plasma
because of electron inertia. The magnetic field generated lies in a series of flux bundles with a scale
size given by the collisionless electron skin depth.

PACS numbers: 95.30.Qd, 51.60.+q, 52.30.-q

Magnetic fields are ubiquitous in the Universe. The
origin of these magnetic fields has been a fundamental
subject of inquiry for many years. It is well known
that magnetic fields can be generated by the motion of a
conducting fluid. This process is described by Faraday's
law for the time evolution of the magnetic field B,
BB/Bt = —cV X E, together with Ohm's law for the
electric field K. In the resistive magnetohydrodynamics
(MHD) approximation, Ohm's law is given by E + V X
B/c = 71J, where the current J = (c/4m-) V X B, V(x, I)
is the velocity of the conducting fluid, and g is the
resistivity. Let us write the MHD equations in normalized
units by making the following replacements: V/Vp V
where Vp is the characteristic magnitude of V, x/L ~ x
where L is the scale length characteristic of V, and
Vpt/L ~ I Then, t. he time rate of change of the magnetic
field in resistive MHD is given by the induction equation

BB/Bt = V (BV —VB) + R 'V B,

where the magnetic Reynolds number R = 4m. LVp/gc2
and the collisional diffusion is given by R . The
induction equation (1) is linear in B. The generation of
a magnetic field, which grows exponentially in time, by a
specified flow V is called a kinematic dynamo.

Classically, the resistance of a conducting fluid to an
electric field is determined by the binary Coulomb col-
lisions between the ions and the current carrying elec-
trons. Since astrophysical plasmas are nearly collision-
less, the resistivity g is very small and the magnetic
Reynolds number is very large (R ) 10s). Therefore,
the sensitivity of the rate y at which the magnetic field
is generated by a dynamo to the magnitude of R is very
important. The dynamo is "fast" if y remains nonzero as
R ~. Conversely, if y 0 as R ~, then the dy-
namo is "slow." Slow dynamos are not believed to be
likely candidates for the effective generation of magnetic
fields in astrophysical plasmas where R is very large. It
is widely believed that only chaotic flows can generate a
fast dynamo [1—4], and, therefore, that only chaotic flows
are relevant for astrophysical dynamos.

Many investigations have demonstrated that magnetic
fields can be generated by a specified flow [1—16]. One
particularly well-studied class of flows are the ABC flows

[17] with velocity components V„=A sinz + C cosy,
VY

= B sinx + A cosz, and V, = C sinY + B cosx. The
ABC flows are periodic in space with period 2w in x, y,
and z, time-independent, incompressible (V V = 0), and
the vorticity co = V X V = V. If one of the parameters
A, B, or C is zero, then the flow is integrable [17].
When all of the parameters A, B, and C are nonzero (for
example, A = B = C = 1), then chaotic streamlines exist
in a portion of space [17].

Magnetic field generation by a chaotic ABC flow in
the resistive MHD approximation has been investigated
numerically by Galloway and Frisch [2]. They found that
the growth rate of the magnetic field does not decrease as
the Reynolds number increases to R = 550, the largest
value of R that they investigated. The magnetic field
generated is concentrated in narrow structures centered on
the stagnation points of the flow. The width of these
structures decreases as R increases, scaling as R
Finn and Ott [11] studied a chaotic map, related to
the ABC flows, in the zero-resistivity limit (R = ca).
They found that the magnetic flux concentrates on a
fractal and that the magnetic field exhibits arbitrarily fine-
scaled oscillations between the parallel and antiparallel
directions.

Magnetic field generation by a nonchaotic ABC flow
in the resistive MHD approximation has been studied
analytically by Soward [7]. The growth rate decreases
as R increases, although the decrease is very small, the
growth rate scaling as ln(lnR )/1nR . In a collisionless
plasma (R = ~), a nonchaotic ABC flow cannot generate
a magnetic field. As in the case of a chaotic flow, the
magnetic field is concentrated in narrow structures whose
width decreases as R increases, the width scaling as

m

Therefore, in the resistive MHD approximation, for dy-
namos driven by both chaotic and continuous nonchaotic
flows, the magnetic field generated lies in narrow struc-
tures whose width decreases to zero as R ~. In the
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zero-resistivity collisionless limit, magnetic field energy
can only be generated by chaotic flows, and the field
generated is concentrated on a fractal. A continuous, non-
chaotic fiow cannot generate a magnetic field in a colli-
sionless plasma. The singular nature of the magnetic field
in the R ~ limit suggests that nonideal effects other
than collisionality in Ohm s law, which are neglected in
resistive MHD, may be important in nearly collisionless
plasmas. When the collisional diffusion is zero, the ideal
MHD constraint tying the magnetic field lines to the flow
is still broken by the finite (nonzero) electron mass.

In this Letter I demonstrate that electron inertia dra-
matically alters the kinematic dynamo in collisionless
plasmas. In contradiction to the resistive MHD pre-
diction, continuous nonchaotic laminar flows generate
magnetic fields in collisionless plasmas (where the col-
lisional diffusion R is zero) because of electron inertia.
Thus, the distinction made between dynamos generated by
chaotic and nonchaotic flows in resistive MHD becomes
meaningless with electron inertia. The rate at which mag-
netic field energy is generated at large R can be greatly
enhanced by electron inertia for chaotic as well as non-
chaotic flows. The magnetic field generated by a chaotic
flow in a collisionless plasma is not fractal in structure.
Instead, the scale size of the field generated is given by
the electron skin depth.

Consider the general form of Ohm's law [18],

VXBE+ JXB VP,
nec

—+ V (VJ + JV) + r)J, (2)
m, BJ
ne2 Bt

where the electron collisionless skin depth d, = c/cu„„
with the electron plasma frequency cup, = (4mne /m, )

]/z

and the current J = V X B. The nonzero electron mass
m, introduces the scale length d, into the dynamo
problem. Equation (3) is written in the normalized units

given before Eq. (1). Thus, the skin depth d, in Eq. (3)
is normalized to the scale length L of the flow. Gradients
in the electron pressure do not contribute to the dynamo.
Consistent with the neglect of the nonlinear J x B force
in the fluid momentum equation in the kinematic dynamo
problem, the nonlinear J X B force in the generalized

which includes the effect of the nonzero electron mass m,
and the force caused by gradients in the electron pressure,P„in addition to collisions, and where n is the number

density of electrons. Insertion of the generalized Ohm's
law in Eq. (2) into Faraday's law yields the generalized
induction equation

—(B —d, V B) = V (BV —VB) —d, V
8

Bt

x [V . (VJ + JV)] + R 'V B, (3)

Ohm's law (2) has been neglected in the derivation of Eq.
(3). As a result, the generalized induction equation (3) is
linear in B.

The induction equation (3) is solved on a triply periodic
Cartesian grid, with period L = 2m- in x, y, and
and with the flow velocity V given by an ABC flow.
Spatial derivatives are evaluated to fourth order in the
grid spacing b, [19] while time stepping is second order
accurate in the time step At with a leapfrog trapezoidal
scheme [20]. The number of grid points retained is varied
to ensure that the results are not sensitive to this number.
The Laplacian V operator is inverted by means of a three-
dimensional fast Fourier transform.

Let us define the total magnetic energy (B2 (r)) at time r

by

(B (r)) = dx dy dz 8, x, y, -, t

+B,(x, y, z, r ) + B.(x, y, z, t)].
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FIG. 1. Magnetic dynamo with electron inertia. The growth
rate y of the magnetic field generated by a nonchaotic ABC
flow (A = B = 1, C = 0) is plotted as a function of the
magnetic Reynolds number R . The crosses are the results
from simulations using the resistive MHD equations (d, = 0),
while the circles are the results from simulations which include
the effect of electron inertia (d, = 0.2).

From an initial perturbation, the magnetic field evolves
into a steady state in which (B2(t)) increases exponentially
in time: (B2(t)) = (Bz(to)) exp[2y(r —to)], where y is the
growth rate.

Figure 1 is a plot of y as a function of the magnetic
Reynolds number R for a continuous, nonchaotic, ABC
flow with A = B = 1 and C = 0 (the flow is independent
of the y coordinate). The crosses are the results from
simulations using the resistive MHD Ohm's law (d, = 0),
while the results obtained using the generalized Ohm's
law including electron inertia (d, = 0.2) are given by the

circles. The point at R = ~ is for a plasma with zero
collisional diffusion. In the resistive MHD approxima-
tion, the growth rate y slowly decreases towards zero
as R increases. Electron inertia dramatically alters this
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FIG. 2. Nonchaotic dynamo. The growth rate y of the
magnetic field generated by a nonchaotic ABC flow (A = B =
1, C = 0) is plotted as a function of the electron skin depth d,
for three different values of the Reynolds number: R = 200
(open circles), 400 (solid circles), and ~ (crosses).

picture. At very small R, the effect of electron inertia
is negligible. However, as R increases beyond 40, the
growth rate of the magnetic field becomes larger than the
resistive MHD rate. Furthermore, unlike resistive MHD
where y slowly decreases as R increases, with electron
inertia y actually increases as R increases and the plasma
becomes less collisional. When R = 1000, the growth
rate with d, = 0.2 is more than 5 times as large as the
growth rate in resistive MHD (d, = 0). Importantly, the
growth rate generated by a continuous, nonchaotic ABC
flow remains nonzero and large even in a collisionless
(R = ~) plasma, when the physics of electron inertia is
retained. This is in marked contrast to resistive MHD
where a continuous, nonchaotic flow is incapable of gen-
erating magnetic field in a collisionless plasma.

Figure 2 is a plot of y as a function of the electron
skin depth d, for a continuous, nonchaotic ABC flow
with A = B = 1 and C = 0, and for three different values
of R; R = 200, 400, ~, where the points labeled by
"R = ~" are for a plasma with zero collisional diffusion.
When the plasma is very collisional (R = 200) and d,
is very small, one recovers the resistive MHD result.
However, when d, exceeds a critical value d„;,of roughly
7 X 10 then y becomes larger than the resistive MHD
prediction, increasing as d, increases further. The results
for R = 400 are qualitatively the same as those for
R = 200. However, the critical value of d„beyond
which y exceeds the resistive MHD prediction, is roughly
d,„-,—= 4 X 10, smaller than the critical value in the
more collisional plasma with R = 200. Thus, as the
plasma becomes less collisional and R becomes very
large, the effect of the nonzero electron inertia becomes
increasingly important. In a collisionless plasma (R
~), the growth rate of the magnetic field remains nonzero
and large because of electron inertia.

FIG. 3. Chaotic dynamo. The growth rate y of the magnetic
field generated by a chaotic ABC flow (A = B = C = 1) is
plotted as a function of the electron skin depth d, for two
different values of the Reynolds number: R = 400 (eirc1es)
and ~ (crosses).

Suppose that the inverse scaling of d,„,with R is

given by a power law, d,„,/L = AR, where the power
u and the proportionality constant A are positive numbers
and L = 2n is the scale size of the flow. From the results
for d„;,at R = 200 and at R = 400 one finds that the
power n -=0.8 and the proportionality constant A =—0.8.
One might expect that electron inertia will be important
when d, exceeds the width of the narrow flux bundles
generated by collisions in resistive MHD scales as R '~,

1
the exponent u in the scaling law for d„;,would be ~.
Given the uncertainty in the calculation of u from these
two data points, a square root scaling is not inconsistent
with the results.

Figure 3 is a plot of y as a function of d, for a chaotic
ABC flow with A = B = C = 1, and for two values of
R: R = 400, ~, where the points labeled by "R
are for a plasma with zero collisional diffusion. The
results for the chaotic flow are similar to those for the
continuous, nonchaotic flow shown in Fig. 2. When the
plasma is very collisional (R = 400) and d, is small,
one recovers the resistive MHD result. However, when
d, exceeds a critical value of roughly d„;t———7 X 10
then y becomes larger than the resistive MHD prediction,
increasing as d, increases further. In a collisionless
plasma, the growth rate of the magnetic field remains
large because of electron inertia.

Figure 4 is a plot of the surface B = 3B,
„

in the
periodic box 0 ~ x, y, z ~ 2m- for the magnetic field
generated by the (a) chaotic and (b) nonchaotic flow in a
collisionless (R = ~) plasma with d, = 0.2 where B~

is the maximum value of B in the box. In the resistive
MHD approximation, the magnetic field generated by the
chaotic flow would have a fractal structure, but with
electron inertia the scale size of the flux bundles is
nonzero and of the order of d, . The nonchaotic flow
would not generate a magnetic field in a collisionless
plasma in the absence of electron inertia.

In conclusion, electron inertia has been shown to
dramatically alter the kinematic dynamo in collisionless
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laminar flow generates a magnetic field in a collisionless
plasma because of electron inertia.

»»;j,".
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FIG. 4. Flux bundles. A surface of constant B = 3B,
„

generated by a (a) chaotic and (b) nonchaotic ABC flow in
a collisionless plasma (zero dissipation) is plotted in the box
0~X 2', 0+y ~2m, O~z ~2m, where B,

„

is the
maximum value of B .

plasmas. Unlike the resistive MHD result, the rate at
which magnetic field energy is created by the flow
remains large as R ~, for both chaotic and nonchaotic
flows. When the collisional diffusion R is zero, the
ideal MHD constraint tying the magnetic field lines to the
flow is still broken by the finite (nonzero) electron mass.
As an important consequence, a continuous nonchaotic

[1] V. I. Arnol'd, Ya. B. Zel'dovich, A. A. Ruzmaikin, and
D. D. Sokolov, Sov. Phys. JETP 54, 1083 (1981).

[2] D. Galloway and U. Frisch, Geophys. Astrophys. Fluid
Dyn. 36, 53 (1986).

[3] Y.T. Lau and J.M. Finn, Phys. Fluids B 5, 365 (1993).
[4] S. Childress, Phys. Earth Planet. Int. 20, 172 (1979).
[5] S.A. Molchanov, A. A. Ruzmaikin, and D. D. Sokolov,

Sov. Phys. Usp. 28, 307 (1985).
[6] H. K. Moffatt and M. R. E. Proctor, J. Fluid Mech. 154,

493 (1985).
[7] A. M. Soward, J. Fluid Mech. 180, 267 (1987).
[8] B.J. Bayly and S. Childress, Phys. Rev. Lett. 59, 1573

(1987).
[9] F.W. Perkins and E.G. Zweibel, Phys. Fluids 30, 1079

(1987).
[10] J.M. Finn and E. Ott, Phys. Rev. Lett. 60, 760 (1988).
[11] J.M. Finn and E. Ott, Phys. Fluids 31, 2992 (1988).
[12] B.J. Bayly and S. Childress, Geophys. Astrophys. Fluid

Dyn. 44, 211 (1988).
[13] A. D. Gilbert, Geophys. Astrophys. Fluid Dyn. 44, 241

(1988).
[14] J.M. Finn and E. Ott, Phys. Fluids B 2, 916 (1990).
[15] A. D. Gilbert and S. Childress, Phys. Rev. Lett. 65, 2133

(1990).
[16] J.M. Finn, J.D. Hanson, I. Kan, and E. Ott, Phys. Fluids

B 3, 1250 (1991).
[17] T. Dombre, U. Frisch, J.M. Greene, M. Henon, A. Mehr,

and A. M. Soward, J. Fluid Mech. 167, 353 (1986).
[18] N. A. Krall and A. W. Trivelpiece, Principles of Plasma

Physics (McGraw-Hill, New York, 1973), p. 91.
[19] S.T. Zalesak, J. Comput. Phys. 40, 497 (1981).
[20] Y. Kuribara, Mon. Weather Rev. 93, 13 (1965).




