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Analysis of Spectra from Laser Produced Plasmas Using a Neural Network
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A backpropagation artificial neural network algorithm is applied to the analysis of K-shell x-ray line
spectra from a well characterized laser produced plasma. After training on synthetic spectra produced by
appropriate collisional radiative plasma emission models, the network correctly determines the electron
temperature as a function of distance into the plasma. The results demonstrate the potential utility of
neural networks for interpreting spectral data from plasma devices and sources.

PACS numbers: 52.70.La

Artificial neural networks [1,2] are expected to be use-
ful in applications involving the inversion of observational
data to obtain physical quantities [3,4]. The procedure can
be viewed as analogous to pattern recognition, for which
neural networks are known to be well suited. A variety
of problems in areas as diverse as transport [4], molecular
physics [5], geophysics [6],chemical reaction kinetics [7],
atonuc level classification [8], and infrared spectroscopy
[9,10] have been successfully cast as pattern recognition
problems and addressed with neural networks. We ex-
plore here the application of neural network algorithms to
inverting the relationship between measured plasma emis-
sion spectra and the plasma conditions that produce them.

Emission spectroscopy has long been the standard tech-
nique [10,11] for finding the temperature and density of
high temperature plasmas, such as those found in astro-
physical objects, in laboratory magnetically or inertially
confined fusion plasmas, and in partially ionized labora-
tory plasmas, such as lighting or plasma processing dis-
charges. One measures the peak intensities, and perhaps
the widths, of a number of spectral lines being emitted
by the plasma and compares the results with model cal-
culations in order to deduce T, and N„ the electron tem-
perature and density. Typically, certain spectral lines will
be brighter at certain temperatures and densities and other
lines will dominate in other regions of T, and N, . Tern-
perature sensitivity, for example, is seen in the relative
intensities of transitions with different energy thresholds,
such as lines from different shells or charge states or reso-
nance to satellite transitions. Density sensitivity arises
from collisional quenching of excited states and can be
seen in forbidden transitions or transitions from differ-
ent atomic shells in a recombining plasma. For a given
temperature and density relative ionization fractions are
revealed in the intensities of transitions in different ion-
ization states. The general principle is that examination
of enough lines will give a unique estimate of tempera-
ture, density, and charge state.

The models used in plasma spectroscopy may be fairly
simple, such as the limiting cases of local thermody-
namic equilibrium or coronal equilibrium, or they may

be quite complex collisional radiative models possibly
even including hydrodynamics. The process of modifying
parameters in such models, performing the collisional
radiative calculations, generating synthetic spectra, and
comparing with the measured spectra, takes considerable
effort and time. The analysis is typically hampered by
noisy and incomplete data and by theoretical uncertain-
ties in the models. In this paper we present plasma spec-
troscopic analysis of a laser produced plasma performed
using a neural network that has been trained on detailed
collisional radiative models. The concept that we are ex-
ploring is that this approach to plasma spectroscopy may
potentially be able to simplify and make more robust the
analysis process and, perhaps, automate it as part of an
expert system. Although we have been developing the
neural net techniques using simple EC-shell spectra, the ul-
timate goal is to take advantage of the abilities of neural
networks to assimilate large amounts of input information
in order to infer plasma conditions from complex spectra.

Artificial neural networks consist of layers of simulated
"neurons" with associated activation functions, transfer
functions, and weighting functions for the "synapse"
connections to other neurons. The key elements are an
input layer of neurons, one or more "hidden" layers, and
an output layer. Each neuron has a transfer or response
function associated with it, typically the logistic function
T(x) = 1/(1 + e "), that gives an output value that is a
nonlinear function of the sum of the input values. The
input values are the weighted outputs of each neuron in
the previous layer. That is, if the output of neuron j is o,.
and w;J. is the weight connecting neurons i and j, then the
output of neuron i is

(o;=T gw;. o =1

where the sum is over a11 neurons j having outputs that
feed into neuron i. The hidden layers give the network
a high degree of nonlinearity and, from the point of view
of the network as a pattern matcher, provide an internal
representation of the correlation between the input and
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FIG. 1. K-shell spectrum from highly ionized aluminum
showing the H- and He-like aluminum resonance lines, the He-
like intercombination line, and the He- and Li-like Al satellite
lines.

the output patterns. The network is "trained" by running
a number of cases of known {input, target output) sets
through it and adjusting the weights to minimize the sum
of the squares of the differences between the desired result
and the computed result. During this supervised learning
process the neural network will assimilate and correlate
data given it so that when given input vectors outside
of the training set it will produce reasonable values for
the corresponding output vectors. The matrix of weights

w;, represents the mapping between the set of input
vectors and the set of output vectors and contains all the
information correlating the output to the input. Because
of the high degree of connectivity between the elements
and comprising the network and their nonlinear response,
neural networks have a generalization ability and are
able to deal with noisy or even missing data. Because
plasma x-ray spectra are frequently corrupted by noise
and limitations on dynamic range, and because models

carry their own uncertainties, these properties of neural

networks are especially appealing for spectral analysis.
The x-ray spectra being analyzed were produced by

a simple 60 x 52 p, m aluminum dot target on a thick
CH substrate that was irradiated by a 1.3 ns, 7.35 x 10'3

W/cm2 green laser pulse. Such microdot targets produce
a nearly one-dimensional plasma with reduced opacity
problems, especially for the late-time, relatively low-

density corona. The x-ray spectrum consists primarily of
hydrogenlike Al xm and heliumlike Al xn lines and their
satellites. A sample K-shell spectrum is shown in Fig. 1.
Time and space resolving spectrometers recorded x-ray
spectra from the aluminum in the 5—8 A spectral region.
These measurements are similar to those described in

Refs. [12] and [13].
The plasma was modeled using a collisional radiative

atomic physics model [13]of aluminum comprising a de-
tailed description of the important low lying ionic lev-

els plus an average model for the higher lying states.
The atomic structure calculations were performed using

the Hebrew University —Lawrence Livermore atomic code
(HULLAc). The energy levels and all important radiative
transitions and autoionization rates were calculated us-

ing a relativistic, multiconfiguration parametric potential
model [14]. All electron impact transitions between these
levels were calculated in the quasirelativistic, distorted
wave approximation [15]. These detailed components of
the model were merged with an average level model con-
structed from single particle energies and transition rates
[16]. Photoionization and recombination were based on
subshell Hartree-Slater ionization cross sections [17] and
the cross sections for collisional ionization and its inverse
were obtained from Ref. [18]. Dielectronic recombina-
tion and excitation autoionization were included by ex-
plicitly treating the 2lnl' and Is2lnl' levels for n ~ 4, and

by implicitly including these processes in the isolated res-
onance approximation using configuration averaged au-
toionization rates [19]for 5 ( n ~ 10.

The conventional modeling procedure [13] used to ex-
tract plasma conditions and charge state abundances con-
sists of solving the collisional radiative rate equations,
generating synthetic spectra, and fitting to a measured
spectrum using a least-squares exhaustive search mini-

mization algorithm. The aluminum transitions used in

this analysis include the hydrogenlike Is np( P) -and he-
liumlike Is2 Isnp(-'P, ) resonance lines for n ~ 5, and the
heliumlike Is -Is2p(3P, ) intercombination (IC) line. In
addition, the heliumlike 1s21-2l2l' and lithiumlike 1s 2l-
Is2l2l' satellite transitions [20] were included in the

modeling. These transitions have been widely used to
diagnose hot plasmas using both steady-state and quasi-
steady-state approximations [13,20—22]. They have pre-
viously been shown to determine plasma conditions that

agree with direct free-bound recombination continuum

temperature and interferometric density measurements in

the same plasma analyzed here [22,23]. The quasi-steady-
state model allows a nonequilibrium ionization distribu-

tion but assumes the excited populations are in steady
state due to the rapid time scale for excited-state equi-
libration [21]. The plasma studied here is nearly in

steady-state equilibrium in the dense region near the target
surface. In the expanding, cooling plasma at large dis-

tances from the target surface the plasma is overionized
and recombining [13]. As shown in Fig. 2 both models

yield the same temperatures out to about 80 p, m into the

plume but diverge in their predictions at greater distances
from the target.

We examined three neural network configurations in

this study. In each case the networks were trained on 200
simulated spectra until the output neurons were matched

to an accuracy of 10% for electron temperature, 20%
for electron density, and (for the third network) 10% for
the average Z (ionization state) of the plasma. Gaussian

noise at the 10% level was added to the simulated spec-
tra on each training iteration. The parameters of the syn-

thetic spectra ranged from 200 to 1200 eV, from 10 to
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102' cm 3, and (for the third case) from Li-like to fully
ionized. These span the range of expected values for
the spectra treated here. A universal network spanning
the range of conditions where these aluminum transitions
have diagnostic applications would require a larger num-
ber of training spectra.

In the first instance the network was trained on simu-
lated spectra consisting of H-like and He-like aluminum
resonance lines for principal quantum number n ~ 5 and
the He-like intercombination line; nine transitions in all.
These spectra were obtained from a steady-state colli-
sional radiative equilibrium model. The network thus
consisted of a nine neuron input layer where each neuron
represents the relative intensity of one of the nine x-ray
lines, two hidden layers each having fifteen neurons, and
an output layer having three neurons representing T„N„
and Z, respectively. The second configuration that we ex-
amined also had two fifteen neuron hidden layers and was
trained on steady-state simulated spectra comprising H-
and He-like resonance lines with n ~ 4, the He-like IC
line, three He-like satellite lines, and one Li-like satellite;
eleven lines in all. The third neural network configura-
tion comprised two hidden layers of seventeen neurons
each and was trained on simulated spectra generated with
a quasi-steady-state model using the same spectral fea-
tures as in the second case.

Each of the three network configurations was applied,
after training, to the space and time resolved spectra
taken in the laser produced plasma experiment. The
first network, which included only resonance transitions,
correctly reproduced the electron temperature near the
target surface but gave oscillatory results when applied
to spectra from the recombining plasma farther from
the target. This is because the resonance lines alone
do not accurately reflect the electron temperature in a

Distance (ym)

FIG. 2. Plasma temperature versus distance from the target
as predicted by various procedures: (---) conventional plasma
spectroscopic technique using steady-state model; (—) conven-
tional technique using quasi-steady-state model; (0) neural net-
work trained on steady-state model; and (0) neural network
trained on quasi-steady-state model.

recombining plasma. The second neural net configuration
included satellite transitions, which are clearly seen in
the spectra taken of the plume region of the plasma.
The intensities of satellite transitions relative to their
parent resonance lines are a more robust diagnostic of
the electron temperature in transient plasmas [21]. As
shown in Fig. 2, this network accurately reproduced
the results obtained from a conventional steady-state
analysis. This, however, leads to an overestimate of the
electron temperature in the recombining plume region
of the plasma because the plasma is overionized in this
region. In order to match the relative intensities of the
H-like transitions compared to the He-like transitions in
the plume a steady-state model requires a temperature
substantially higher than the true temperature. In the
third network the steady-state constraint is relaxed and
the charge state distribution is treated as a parameter
independent of T, and N, . As shown in Fig. 2, the
network accurately reproduces the electron temperatures
in both the steady-state region and the recombining
regions of the plasma.

Essentially all of the computational effort of the neural
network approach to spectral interpretation is in the train-

ing phase. In the present examples the quasi-steady-state
network takes several times as long to train as the other
two networks. This is because the sensitivity of the spec-
tra to the temperature and density can be partially masked
by changes in the ionization balance, if the steady-state
constraint is removed. This training time is equivalent
to the time required to interpret a few hundred spectra
using the conventional method. However, once trained,
the neural networks interpret spectra much more rapidly
than the conventional least-squares technique. This is be-
cause the least-squares method must iteratively solve a set
of linearized equations, while the neural network inter-
prets the spectra by a few simple algebraic computations
using the predetermined weights. The neural network
distills the spectral dependencies from complex plasma
emission calculations into "formulas" for the output pa-
rameters. Thus, the "cost" of training the network is
rapidly amortized, and the results of theoretical calcula-
tions may easily be transferred to the many experimental
groups using spectral diagnostics, even for quasi-steady-
state diagnostics which defy simple tabular description.

We have demonstrated that neural network algorithms
work well for obtaining plasma conditions from the
fairly simple E-shell aluminum x-ray spectrum. Although
the simple E-shell spectrum analyzed was tractable by
standard exhaustive search techniques, as Jeffrey and
Rosner point out [3], the fitting of complex emission
and absorption line spectra by exhaustive search can be
prohibitive. We have chosen a sma11 number of well
defined lines for examination but the neural net algorithm
should be capable of working with a raw spectrum. It
would correlate features in a synthetic spectrum with
features in the measured spectrum even if there is some
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uncertainty in the position of the lines as well as noise
affecting the intensity of the lines. In such a scheme
the information contained in the linewidths could also be
used to aid in characterizing the plasma properties. One
could, in principle, construct a library of neural network
weight matrices based on learning the synthetic spectra
computing using very sophisticated and computationally
intensive collisional radiative models. This library could
then be accessed by neural network programs performing
the plasma spectroscopic analysis.

This work was performed under the auspices of the
U.S. Department of Energy by LLNL under Contract No.
W-7405-Eng-48.
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