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A random matrix ensemble incorporating both Gaussian unitary ensemble and Poisson level statistics
while respecting U(N) invariance is proposed and shown to be equivalent to a system of noninteracting,
confined, one-dimensional fermions at finite temperature.
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Wigner's [1] suggestion to model the level statistics
of complex quantum systems by random matrix models
of very large dimensions is well known. In applications
as diverse as two-dimensional gravity [2], topological
field theory [3], quantum chaos [4], and mesoscopic
physics [5] different kinds of universal features emerge,
all represented by particular types of random matrix
ensembles. The analysis of these models seems to lead
one to classical [2,3] and quantum integrable systems
[6] of very special mathematical structure, and many
unexpected relations make their appearance [7].

Random matrix models exhibit a large degree of
robustness [8] and the search for different kinds of
universality has produced a wealth of results in two-
dimensional quantum gravity [2] and in topological field
theory [3]. In quantum chaos and mesoscopic physics
there are physical reasons to expect more universality
classes than presently known [9—12]. This Letter takes
a small step in this direction.

For reasons of concreteness and mathematica1 simplic-
ity, we restrict our attention to a disordered system with-
out time-reversal symmetry (e.g., in the presence of a
magnetic field) and ask whether random matrix models
can account for known departures from GUE (Gaussian
unitary ensemble) level statistics [10—13]. On the one
hand, the class of matrix models with GUE level statis-
tics has been shown recently to be very wide [8,14] and
also to agree well with the properties in the energy region
of extended states [15],but, on the other hand, disordered
systems have energy regions where the states are localized
and the level statistics is Poissonian. To be sure, even lo-
calized states, once sufficiently close energetically, even-
tually repel each other because the exponentially small
overlap can be outweighed by exceedingly small energy
denominators. It is the typical scale of energy differences
needed for level repulsion to be felt that changes dramati-
cally in transition from extended to localized regimes.

Recently, an attempt to incorporate both statistics in a
random matrix model was made [12]:The basic idea was
that in the localized regime the Harrdltonian prefers the
site basis, and hence the random matrix model was made
to break the U(N) invariance which represents the lack of
basis preference in the GUE ensemble. For sufficiently
strong breaking, approximate Poisson statistics could be

obtained. The explicit breaking of U(N) invariance makes
the mathematical treatment and the study of robustness
difficult. While the models we are discussing cannot be
fully accurate representations of the mesoscopic physics
since we will not introduce any explicit dependence
on dimension, we feel that exploring the possibility for
constructing such an enlarged universality class is of
more general interest and holds the potential for wider
applicability than just to mesoscopic physics.

Our main new observation is that basis preference,
while needed, does not necessarily force the abolishment
of U(N) synunetry. In a way vaguely reminiscent of
spontaneous synunetry breaking, we argue that what
is important is the preference of some basis but it
is immaterial which basis this is. Averaging over all
preferred bases we recover U(N) invariance and still
manage to evade GUE statistics if a certain parameter is
made strong enough.

Imagine that the preferred basis is represented by
an N X N unitary matrix V. This representation has
N redundant phases, and it is therefore convenient to
consider instead the unitary matrix U = VDVt where

D;, = 8;Je'e (~e;[ ~ m, i = 1,2, . . . , N). For U to define
uniquely a preferred basis we need the e'e 's Jto be all
different. In order to ensure this upon averaging we
would like the weight to contain sufficient repulsion
between the e'~I's. Let the Hamiltonian be represented
by a Hermitian matrix H. For fixed U we consider the
unnormalized distribution of H given by

y (H)dN H e
—TrH e bT ([U.H][U,H] )dH

—
H

Here, dH H = [P, dH;; Q&, dRe(H;, )dIm(H;, ) and b )
0. The b-dependent term tries to align H with U and
hence prefers the basis V. We now average over U
with the invariant U(N) Haar measure dU. This induces
enough repulsion between the eigenvalues of U [1,16] to
ensure that a unique preferred basis almost always exists.
Our ensemble therefore is

g(H)d&'H = C'(N b)e (2b+')T«'—
2bTr UHU H
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where C'(N, b) is a normalization constant. The integral
over U can be done using the famous formula [17]

Det;~ [exp(a;b~)]
dUexp[TrUAU'B] ~

+
where the a; and b, are the eigenvalues of the Hermi-
tian matrices A and B. Using this integration formula
with A = B/2b = H we obtain, after absorbing the b

dependent part of the prefactor in Eq. (2) into the deter-

minant,

'P(H)d H

—(b+-)(I, +LJ)+Zb r, i.,.Deti j e
-d~ H.

The measure d~ H can be written as P;&, («; —«, )
[],dx; d p, where d p, is the angular part which can
be simply integrated out. We then obtain the joint
probability density function for the eigenvalues

P(x), «2, . . . , «bt) dx; = C(N, b)Det; e (3)

P(x), x2, . . . , x)v) in Eq. (3) coincides [18—20] with the diagonal element in the "coordinate representation (x)" of the

density matrix of N noninteracting fermions of mass m, in one dimension, moving in a confining harmonic potential
1

V(x) = 2mru2«2 at finite temperature,

f f p2 22)
P(x), «2, . . . , «)v) = 3VDet;, (x;iexp —P + ~ ix)) i

(2m 2 j j

= 3VDet; exp-lj
~ li sinh hem j ' (4)

Equation (6) already exhibits both limiting situations of
GUE and of Poisson statistics: For b growing with N
slower than N2, PN ~ ~, the gas becomes completely
degenerate, and one obtains the GUE semicircle law

$4b+ 1
nx

2N

$4b+ 1

1

2X

where 2V is a normalization factor, PFicu = arcosh(1 +
2„), and the length unit is fixed by mes/h = Ql + 4b
This means that the mass and temperature are related by
mcu/h = coth(hruP/2). The GUE ensemble is obtained in

the limit hcu P ~ ~, mes/8 ~ 1 [implied by b ~ 0, GUE
statistics in Eq. (3)], and complete disappearance of level
repulsion is obtained in the limit hcuP 0, mes/h

[b ~ ~, Poisson statistics in Eq. (3)].
When N is large, it is much more convenient to analyze

the grand canonical version of the ensemble (3). Indexing
the one-particle states by u, denoting their energies by
e, and the corresponding wave functions by P (x), one
immediately can write down the expression for the local
density n(x):

2

The chemical potential p is fixed by N via

g [eP{~ u) + 1]-)-
For large N one can use semiclassical forms for tel (x)

as long as x is away from the edges of the support of
n(x) and replace the sum over u by an integral. A simple
computation gives then

dp 1
n(x) =

2+1 2 2—~ 2mb 1 + [cpa~)v 1] ) ep(,—& +; )

For b growing with N faster than N2, PN 0, a Gaussian
distribution is obtained:

N
n(x) = e '.

17
(8)

Correlations can also be easily calculated. Consider the
2-point connected correlation:

Bn(x)6(n)(x') = —gn P'(x)P (x') xWx', (9)

with n = [eP" ~ + 1] '. Writing x = x + 2bx, «' =
x —zb, x with 0 ( )b,x~ (& n(dn/dx), we derive for

N

Bn(x)bn(x')

[n(x)]
and for PN 0:

sin[a. n(x)b, x] '
n(x) Ax.

Bn(x)bn(x') ~b(~, )

[n(x)]'

The last two equations show that the model incorporates
GUE and Poisson statistics.

Consider now the intermediate case when, in the N
~ limit, PN const =—A. If the constant A is small, the

average density of levels n(x) and the correlations are ap-
proxitnately the same as for PN ~ 0. The case A &) 1

is more interesting: n(x) is a complicated function which,
for small x, is proportional to v A —x~ and, for large x, is

proportional to exp( —x2) ["small" and "large" here mean,
respectively, A —x2 » 1 and —(A —x2) )& 1]. The cor-
relation also changes when one moves from the center of
the band towards the edges: At the edges (i.e., x )) A) the
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levels are essentially uncorrelated, whereas at the band
center (x = 0) the correlation function is given by

8n(x)bn(x') f sin mu &

[n(x)]' k ~u

8; —8
sin 2

X
1+4b sin2

d0;.

(13)
For numerical purposes one may wish to stick to
the canonical ensemble; expressions for n(x) and for
bn(x)bn(x')/[n(x)]2 can be obtained in terms of infinite

2 2~ u/2A, (12)
sinh(m'u/2A)

where u —= n(x)hx is the energy separation measured in
units of the averaged level spacings. While a sequence
of roughly A levels obeys GUE statistics, the correlations
between more distant levels rapidly diminish. This is in
sharp contrast with the case PN ~ (PN ~ 0) where,
in the limit N ~, an arbitrary long sequence of levels
obeys the GUE (Poisson) statistics. In this sense the
parameter PN of our model can be identified with the
dimensionless conductance g. g ~ corresponds to
metallic behavior, g 0 corresponds to an insulator, and

g ~ const is identified with a mobility edge situation,
where a third universe statistics, intermediate between
the GUE and Poisson, is observed [10—12]. In that latter
case bNr = Nr/2A where KNr describes fluctuations
within an energy interval I with an average number of
levels equal to Nr (Nr » A is assumed). The linear

relation between b,Nr and Nr is a consequence of
the exponential decay of correlations in Eq. (12). In
Ref. [11] it was argued that a linear dependence is ruled
out in the universal regime by a sum rule expressing
the conservation of the total number of levels N. In
our analysis of the matrix model we found that in the
large N limit it is correct to pass from the canonical
description, fixed number of levels or fermions, to the
grand canonical one, arbitrary number of levels in the
presence of a "chemical potential. " Therefore, the overall
level number conservation cannot affect universal features
of the statistics of finite sequences of levels in the
thermodynamic limit.

A guess for the enlarged universality class of these
models is the following: add more U(N) invariant function
of U and H to the exponent in Eq. (1) and average over
U. %Wile strict U(N) invariance is useful, models with
explicit breaking [12] are not excluded and can easily turn
out to be controlled by U(N)-symmetric fixed points. In
this context it is amusing to note that if, in a reversal of
roles, one integrates over H in (1) and views the resulting
distribution of U as a generalized circular Dyson-type
ensemble [16], one recovers a "circular" version of the
eigenvalue distribution arrived at in Ref. [12]:

N

Pe(~i, , ~w)

sums that converge fast as long as PN does not grow to
infinity [20,21]. For example, the exact formula for n(x),
in Eq. (5), is

n(x) = g ~P (x)I' g (—1)"q'"
a=1 r=o

N+r

(14)
Z=N+1

where e =her(a —2), q = e & = [I + 1/2b +
Ql/b + 1/4b2] ', and Pe ~+, (1 —qe) ' —= 1.

Equation (2) can be viewed as a degenerate case, in one
space-time dimension, of "induced QCD" models [22].
Generalizations of the ensemble discussed here to the or-
thogon8 or symplectic case are likely to produce technical
complications similar to the ones encountered in the study
of random unoriented two-dimensional manifolds with or
without matter [23].

Let us mention the widely studied ensemble of banded
matrices (Ref. [13] and references therein). For such
matrices, in contrast to the models considered here,
only elements within a "band" of width W near the
diagonal are appreciably different from zero. Statistical
properties of the ensemble depend on the value of
the parameter N/W2, which plays a role similar to
our parameter b. When N increases, for fixed W, the
ensemble describes a quasi-one-dimensional disordered
system with localized eigenfunctions [13]. It should
also be possible, by an appropriate scaling of W with
N, to obtain a limiting eigenvalue distribution which is
neither Wigner-Dyson nor Poisson. To our knowledge,
there are no detailed analytical results for the eigenvalue
distribution comparable in their generality to our Eq. (3),
which gives the distribution for any value of N and b.

In summary, the random matrix model proposed in
Eqs. (2) and (3) is an extension of the standard Gauss-
ian unitary ensemble with a level distribution that interpo-
lates between Wigner-Dyson and Poisson statistics. U(N)
invariance is preserved, and the model is equivalent to
a system of one-dimensional fermions in a harmonic po-
tential at finite temperature. Possible applications are to
modeling of level statistics in quantum chaos, mesoscopic
physics, and disordered electronic systems. For example,
in the latter case, the proposed ensemble can be driven
from metallic to insulator behavior by varying the param-
eter b.
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