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We study the domain of coupling constants for which a 3-body or 4-body system is bound while none
of its subsystems is bound. Limits on the size of the domain are derived from a variant of the Hall-Post
inequalities which relate N-body to (N —1)-body energies at given coupling. Possible applications to
halo nuclei and hypernuclei are briefly outlined.
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For the sake of clarity, we shall define in this Letter a
"halo" as a 3-body quantum system that is bound while
none of its 2-body subsystems has a discrete spectrum.
More generally an N-body halo is bound while none
of its subsets is stable against spontaneous dissociation.
This is more restrictive than the usual meaning of a
weakly bound system with a very extended wave function.
These systems are sometimes called "Borromean" [1],
after Borromean rings, which are interlaced in such a
subtle topological way that if any of them is removed,
the other two would be unlocked.

Halo states are seen in nuclear physics [1,2]. For in-

stance the (u, n, n) system is bound ( He), while (ct, n)
and (n, n) systems are both unbound. There is a coopera-
tive effort of all attractive potentials to achieve the binding
of He.

The halo phenomenon shows up in simple potential
models, as seen from explicit calculations on specific
isotopes [1—3], or from the rich literature on the related
Efimov effect [4] or Thomas collapse [5], which prove
that a 3-body system is, indeed, more easily bound than a
2-body one.

Consider a short-range potential g V(r) acting between
two particles of mass m separated by r. Even if V(r) is
attractive, a minimal strength gq/m is needed to achieve
binding, where g2 is independent of m. For instance, in
a Yukawa potential V = —[exp( —

)Lt, r)]/r, one can fix the

energy and distance scales so that m = p, = l without
loss of generality, and one finds g2

——1.680 [6]. (A
simple argument by Dyson and Lenard [7] shows that

g2 ) ~2.) Now, if one considers three identical bosons
with mass m = 1 interacting through +[exp( —r;))]/r;~,
where r;, is the relative distance between particles i and j,
one can look at bound states by variational methods or by
solving the Faddeev equations, and one finds binding for
g —g3, with gq /g2 = 0.804. We call this a 20% window
for halo binding.

If one repeats the above calculations for other short-
range potentials, one finds similar values for gi/g2, for in-

stance 0.801 for an exponential form V (r) -= —exp( —r)
or 0.794 for a Gaussian V =- —exp( —r'). Such quasiuni-
versality, already noticed in [8], is not too surprising. In
the weak coupling limit, the wave function extends very
far away and does not really probe the detailed structure
of the potential. Any short-range interaction is almost
equivalent to a delta function in this limit.

It seems therefore very likely that the window for
halo phenomena is limited, i.e., g3/g2 cannot be made
arbitrarily small by tuning the shape of V(r). We shall
show below that

for any potential, and we outline how to derive similar
inequalities for asymmetric 3-body systems, or for 4-body
or more complicated systems.

The method of deriving (1) is directly inspired by the
Hall-Post inequalities [9], which have been recently re-
discovered [10], applied to hadron spectroscopy [11],and
generalized to the case of unequal masses [12]. Earlier
applications were mostly motivated by considerations on
the stability or instability of matter. The Hamiltonian for
three bosons of mass m can be written as

i.e., introducing the translation-invariant part H~ of the
Hamiltonian H~

H3 (m, g) = g H2 (3m/2, g) = —p H2 (m, 3g/2) .
j&j

(3)
Hence, from a simple application of the variational
principle, the ground-state energies Etv for a given (large
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enough) coupling g satisfy

E3(m, g) ~ 3E2 (3m/2, g) = 2E2 (m, 3g/2), (4)

which is the simplest form of the Hall-Post inequalities.
The decomposition (3) also implies that if H3 has to
support a bound state, each 02 should produce a negative
expectation value in the corresponding wave function, and

thus 3g/2 ~ gz, Q.E.D.
A straightforward generalization of (3) to N bosons is

[10]

HN(m g) KAHN Il N—

1 lkl ( Nm

It =1

within the ground state of 03, one gets

hs(g) ~ h2(2g),

and more generally
(N —1 i

hiv(g) ) 4-tl( 2g I

(10)

occurs between hiv(g) and h~ i(g). One expects all
curves to merge at A(h = l, g = 0) as g 0, since the

particles become independent in this limit. If one takes
the expectation value of the identity

H (h, g) = —g H
'

(h, 2g) (9)
i&.j

where the superscript in HN 1 means that the kth particle
is omitted. Saturating with the ground state of H~ gives

N —1
C C

SN N N —1 &

i.e., NgN increases with N.
For numerical illustration in the N = 4 case, we

adopted a variational tnethod that is widely used in quan-

tum chemistry [13]. It is based on trial wave functions of
the type

qr (x;) = g cl"l exp ——g a;i x; xj
(n)

n E~J

(7)

where (x;} is a set of relative Jacobi coordinates. Sym-
metry is properly implemented by imposing relations be-
tween neighboring coefficients ct"l and definite-positive
matrices at"&. After numerical minimization, we obtain

g4/g2 ——0.67 for a Yukawa potential, i.e., a 13% window
for a genuine 4-boson halo, once g4/g2 is subtracted from

gs/g2.
Note that the bounds (1) and (6) are not expected

to be saturated, since the Hall-Post inequalities become
equalities only for harmonic oscillators, which are far
frotn the short-range potentials we consider here.

Similar inequalities can be written down in a variety
of situations. Let us give some examples. Consider first
N identical particles with mass m = 1 in the field of an
infinitely massive source. The Hamiltonian is defined as

N 2

HN = g ' + hv(r;) + g g W(r;J.). (8)
i(j

For N = 2, one can write the simple decomposition

H2 = —pi + hV(rt) + —
p2 + hV(r2)1 2 2

+ (pl + p2) + gW(r&2)
2

(12)

for any 0 ~ A ~ 1.
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for any 0 ~ u ~ 1. To get (H2) & 0, one needs at least
one of the square brackets having a negative expectation
value. This excludes the triangle (h ~ a, g ~ 1 —u]
shown in Fig. 1.

Two remarks on this simple lower bound are in order.
First, the actual boundary is expected to be concave. The
couplings h and g enter the Hatniltonian linearly, so if the
minimum E of H2 vanishes at both P(h, g) and P', one
has [14]

E[AP + (1 —A) P'] ~ AE(P) + (1 —A) E(P') = 0,

The short-range attractive potentials V and 8' can be
normalized such that a single particle is trapped around
the source for h ) 1, and two particles are bound together
for g ) 1. The nontrivial domain is thus to be found
inside the square (h & 1,g & 1).

Let hN(g) be the boundary for binding N particles
around the source. This means that halo type of binding

FIG. 1. Lower limit for the domain of halo binding of two
bosons in the field of a static source. The coupling to the
source is denoted h, while g is the interparticle coupling. Two-
body binding occurs for h ) 1 or g ) 1. The straight line AB
is deduced from the simple decomposition (12), the parabola
from (14). The dotted parabola is a lower limit for binding
three bosons in this central field, as deduced from (9).
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1+ x 1 1 &P; —xP3
(P1 + P2 + P3) ' (bPI + bP2 + bP3) + g —+ —

l

' + hV(«, 3)1+2x 2 M ( 1+x

,.')('. ") ." -'
4

+ 2 X 1 + X
(1 + 2x)

Second, while the limit A(h = l, g = 0) of truely independent particles obviously belongs to the boundary, B(h =
0, g = 1) is likely to be in the continuum, since a weakly bound (1,2) system needs a minimal attraction h to remain
trapped by the source.

A more elaborate decomposition leads to an improved boundary which better complies with the above remarks. %e
provisionally restore a finite mass M for the third particle and write as in [12]

H(M) = —+ —+ + hV(«13) + hV(«23) + gW(«12 I

2 2 2M

where the momentum (p; —xp3)/(1 + x) is the conjugate
of the relative distance r;3, and b and b' are known
functions of M and x. In the limit M ~, we read off
from (14) that H2 would never support a bound state if

1+ 2x& (1 + 2x)
h & 1 and g (1. (15)1+x ) 4x 1+x

This is the inner part of the parabola shown in Fig. 1,
from which we get a crude lower limit on the minimal
coupling h3(g) to bind three bosons around the source, as
per Eq. (10).

The decomposition (14) can be used for finite M.
Consider for instance the case where M = 1 and g = 0.
One should restrict to x(1 + x) ) 1/2 in order not to
introduce a negative reduced mass. The two particles,
which do not interact with each other, can be bound
simultaneously below the critical coupling h = 1 for
individual coupling. Each particle benefits from the

increase of the reduced mass provided by the other.
However, by choosing the optimal parameter x in (14),
one can easily deduce that the window for halo is limited
to h & 1/2 + j3/4 = 0.93, i.e. , at most 7%.

In a situation where the three masses or the three
couplings are different, the most general decomposition
involves two parameters [12], instead of the single x in

(14). So the analysis becomes slightly more involved.
%e now write the Hamiltonian for two identical parti-

cles of mass m, and two others of mass M
1

pi Pg+ + gl2V12(«1 ~ + g34V34(«34)
]22Pl j342M

gmM ~mM I ij

including up to three different potential. It can be
rewritten as

H4 = (p1 + p2 + p3 + p4) (bp1 + bp2 + b'p3 + b'p4) + a12 + g12V12(«12)
P] P2

+ a34 l
+ g34V34(«34) + g a [ap (1 a) Pj] + g M VmM(rij )

P3 —P4
2 )

(17)

For given n, one can solve for b and b', as well as for the
inverse masses, with the result

1 2 1
a12 = —(1 —a') ——a',

m M

g, 2
~ 1 —a- —(m/M)n

g34 ~ —(M/m)(1 —n)' + a(2 —n),

gmM —1/2 .

(19)

1 2 1
a34 ————(1 —n) + —n (2 —n),

m M
(18)

1 1+
4m 4M

If one rescales the couplings to the critical value for 2-
body binding with the appropriate inverse reduced mass,
m ' for g12, M ' for g34 and (m ' + M ')/2 for g M,
then H4 cannot support a bound state if simultaneously

Interestingly, the condition on g M decouples. Hence
the domain for 4-body binding without 2-body binding
consists at most of 1/2 ~ g M ~ 1, and, in the (g12, g34)
plane, the area between the unit square and a parabola,
as shown in Fig. 2. One should of course exclude the
domain corresponding to 3-body binding to get a genuine
halo.

1466



VOLUME 73, NUMBER 11 PHYSICAL REVI EW LETTERS 12 SEPTEMBER 1994

0.8—

04—

0.2—

0.2 0.4 0.6 0.8

FIG. 2. Lower limit for binding four particles with masses
(m, m, M, M). The couplings g|2 and g34 are normalized to the
critical coupling for binding (m, m) and (M, M), respectively.
Meanwhile the (m, M) coupling should be at least half the
critical coupling for binding m to M. A value M/m = 2 is
assumed here for the drawing.

Our interest in 3-body systems was clearly triggered
by nuclei like He or "Li with two neutrons weakly
attached to a compact nucleus [1]. We assume a spin
singlet state for the two neutrons, so that their spatial
wave function is symmetric. States with more than
two neutrons in the halo unfortunately escape direct
application of our results, because of the Pauli principle.
Our result on (m, m, M, M) configurations is perhaps
relevant for (n, n, A, A) hypernuclei with strangeness S =
—2, a field of intense theoretical studies [15].
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