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Geometrical Barriers in High-Temperature Superconductors
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A theoretical description of vortex dynamics in thin flat samples is derived and is found to compare
favorably with experimental results. In perpendicular applied magnetic field the vortex penetration
is delayed significantly due to the presence of a potential barrier of geometrical origin. This novel
geometrical barrier effect results in hysteretic magnetization and in the existence of an irreversibility
line in the absence of bulk pinning. Among the unique characteristics of the barrier are a vortex
concentration in the center of the sample and a zero-field peak in the magnetization loops.
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In this paper we consider samples with d » A (A is the
penetration length). In this case the current flows pri-
marily near the flat surfaces; however, in the following
analysis only the current density averaged over the thick-
ness J~(x) is of importance. The Meissner current ex-

The understanding of vortex dynamics in high-
temperature superconductors (HTSC) is based to a large
extent on the results of magnetization measurements [1].
Hysteretic magnetic behavior is usually interpreted as
evidence for finite critical currents due to the bulk pinning
of the vortices. Some recent experiments also suggest
the existence of Bean-Livingston (BL) surface barriers

[2] as a possible source of the hysteretic behavior. In
this Letter we present a new theoretical derivation and
experimental evidence for an additional significant source
of irreversibility which we denote as the "geometrical
barrier. " This barrier results in hysteretic magnetization
in a type-II superconductor in the absence of any bulk
pinning of the vortices. The spatially extended Meissner
current in a thin Aat sample in perpendicular field results
in effective trapping of the vortices in the center of the
sample. The geometrical barrier is expected to dominate
the observed magnetic behavior of HTSC at elevated
temperatures where critical currents are relatively low. A
related behavior of edge pinning was observed in type-I
superconductors [3,4].

We consider a thin superconducting strip of rectangu-
lar cross section of width 2W( —W ( x ( W) and thick-
ness d (—d/2 ( z & d/2 and d (( W) which infinitely
extends in the y direction. A perpendicular magnetic field

0, is applied along the positive z direction. In this con-
figuration the resulting Meissner current and field profiles
are given by [5,6]

erts a Lorentz force on a vortex, resulting in a position-
dependent vortex energy per unit length that can be
approximated by e(x) = eo + (tto/c) f, J, (.t)dt n. ot too
close to the edges. eo is the line energy of a noninter-
acting vortex and Po is the flux quantum. In increas-
ing 0, the vortices initially cut through the sharp rims
of the sample without complete penetration, and thus ef-
fectively round off the curvature of the edges on the order
of d/2. As a result, in the edge region the vortex en-

ergy increases gradually from zero to a maximum value
of cod at W —~x) = d/2. Clem et al. [3] have carried
out a more complete calculation of the total Gibbs free
energy in a strip with an elliptical cross section. Here we
present a full solution of the current and field profiles in a
rectangular strip which does not require any detailed en-

ergy considerations. The vortex potential e(x), as shown
in Fig. 1, is the consequence of the flat geometry and not
of the precise shape of the sample edges [7]. The po-
tential demonstrates the unique behavior of a flat sample
in contrast to a thin ellipsoid where the Lorentz energy
is exactly compensated by the nonuniform vortex energy
due to the elliptical thickness variation [3,8]. In contrast
to the BL barrier, which is very sensitive to surface qual-

ity, the geometrical barrier is very robust, since it extends
over the entire sample width. In addition, there should be
no appreciable thermal activation over such an extended
barrier, which involves macroscopic energy —rod.

The equilibrium condition for vortex penetration is ob-
tained when the Gibbs potential in the sample center is
zero, which occurs at H, q

= H, ~d/2W and magnetization
of M, q

= H, ~/16. In contrast to the elliptical cross sec-
tion case, no vortices penetrate the rectangular strip at this
field due to the large macroscopic potential barrier. Vor-
tex penetration occurs at significantly higher applied fields
when the Lorentz force, J(x)@ 0c/, at W —)x~ = d/2
reaches the value of 2eo/d. From Eq. (1) the result-

ing penetration field is —H„= H, ~gd/W and M~ =
(H, ~ /8)QW/d, and hence H, ~ is overestimated by a factor
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FIG. 1. Vortex potential at various applied fields H, ~ H~.
At H, = 0 the potential at the edges of the sample is assumed
to drop linearly for simplicity.

of about QW/d if obtained from the measured penetra-
tion field scaled by the standard elliptical demagnetization
factor. Note that despite the large differences in H~, the
edge field in both cases is H, i since HE = (2W/d)H, for
an ellipse and HF. = H, QW/d in a strip [4,9].

At H, ~ H„vortices enter only into the edge regions
at [x[ ) W —d/2. In a steady state situation we have to
cut off the diverging Meissner currents at a value on the
order of Jz = 2ceo/Pod = cH, i/2n. d in order to balance
the net force on the edge vortices. For H, & H~ there is
no longer a potential barrier for vortex penetration and the
Meissner currents drive the entering vortices to the center
of the sample. We first analyze the case of zero bulk
critical current, J, = 0.

In the absence of pinning, no net current may flow in a
vortex-filled region in a steady state []B,(x)] ) 0, JY(x) =
0], and similarly, no vortices may be present in the
regions of finite Meissner current [[J~(x)[ ) 0, B,(x) = 0].
The field components B, and B„outside the sample
must be respectively the real and imaginary parts of
an analytic function F(s) of a complex variable s =
x + iz Since . on the surface of the sample B„(x)=
(2nd/c)JY(x), F(x) must be purely real in the vortex-
filled regions and purely imaginary in the vortex-free
region. A function that satisfies the above requirements
is F(s) ~ Q(b —s )/(W —s2), which results in

b2 —x2
J, (x) = 0, B, (x) =H.

at Ixl&bor [x[) Wand

x cH x2 —b
Jy(x) =- , B, (x) =0,

]x] 2nd W —x

at b & ]x[ & W, where 2b is the width of the vortex-
filled region in the center of the strip. The procedure
can readily be extended to account for the presence of
an additional transport current by replacing b —s by
(bg —s)(bL + s), and will be considered elsewhere. The
above solution is self-consistent for any value of b, and
therefore b has to be determined from the following
force-balance consideration. As the field is increased,
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FIG. 2. The current and field profiles at indicated values of
H, /H~ for J, = 0 [(a) and (b)] and J, = 0.15Jz [(c) and (d)]
showing vortex accumulation inside the sample.

additional vortices penetrate and expand the vortex-filled
region. At any given field a steady state is reached when

]JY(W —d/2)[ = JE. From the above equation we obtain

b=W 1 — Hp H in the case of d&(W, and the

corresponding magnetization is given by M = H, (W
b2)/8Wd = H, i/8H, . The resulting current and field
profiles are shown in Figs. 2(a) and 2(b). Note that the
gradient in the vortex density in the central region is
accompanied by vortex curvature such that V X B = 0.
As the field increases, new vortices enter the sample
and accumulate in the center. This process, however,
is not reversible; if the field is decreased, the vortices
remain trapped by the Meissner currents, and the width
of the vortex-filled region increases, maintaining constant
trapped flux in the central region. Vortices leave the
sample only when b reaches W —d/2. A reversible
situation is obtained at fields on the order of H, 1 when the
vortex-filled region fills the entire sample. JF continues to
flow at the edges and results in reversible magnetization
of —H, i/4m. . Hence, in the absence of pinning the
geometrical barrier results in hysteretic magnetization and
in an irreversibility line that follows the temperature
dependence of H, 1.

In the presence of bulk pinning, the initial penetrating
vortices do not reach the center of the sample, and stop at
[x[ = b„, where the Meissner current density equals the
critical current density J, . As the field increases, vortices
form two isolated vortex-filled regions at o ( [x[ & b.
The central region, [x] ( a, remains vortex-free, since

JY(x) & J, there, and no vortices can penetrate; in the
outer ]x[ ) b regions JY(x) ) J„and no vortices may
remain there in a steady state. Note that a significant
part of the strip carries supercritical current densities
which may exceed J, significantly. For a typical HTSC
monocrystal of 10 p, m thickness and H, 1

——300 Oe
we obtain Jz ——5 x 104 A/cm2, and in a thin film of
d & 0.5 p, m the resulting JF is in excess of 106 A/cm2.
Since these edge currents are comparable to state-of-the-
art critical currents in HTSC at elevated temperatures,
the geometrical barrier is a very significant effect with
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important practical implications. Note that in the pres-
ence of bulk pinning, the edge current required for vortex
penetration increases, JE ——J,. + JE, since the Lorentz
force at [x~ = W —d/2 has to overcome both the pinning
force and the gain in vortex potential in the edge region.
In addition, JE increases significantly when the image
forces of the BL type become important. Our results can
be readily extended to include this effect by replacing
H, ] in the JE and H~ expressions with H„ the BL surface
barrier penetration field.

To derive the current and field distributions at finite
J,. we resort again to complex function analysis. The
procedure is similar to the J, = 0 case described above
and results in F(z) = j(z2 —a )(b~ —s )/(e —s ),
where 0 ~ a ( b ( W —d/2 s e ~ W. However
the requirement for the current in the vortex-filled
regions a & )x( & b is now ( J~(x) (

= J„rather than

J~(x) = 0, and we also include here a rigorous current
limitation at the edges, J~(x) = JE at e & lxl & W
This is achieved by multiplying F(s) by f(s) such that
Im{f(x)j = 0 everywhere except at a & ~x~ & b, where
we require Im{f(x)) = I/F(x), and Im{f(x)] = I/yF(x)
at e & )x~ & W (y = J,/JE). As a result

() -- v - b

J, (x) =.
)f b e2 —X2
=„' arctan —,

7J~ (Wi e ')(x —b -)-—-
+=„' arCtan (~2 b2)(,2,.)

. 6 & x ~ e„

JE,

and —J, (x) for x & 0. The corresponding applied field
and magnetization are given by

2H, ] yp 1~ —
I

yp)

results for the critical state behavior in a thin strip are
recovered [5,9,10].

An additional important effect of the geometrical bar-
rier is the strong "zero-field peak" in the magnetization
loop which is routinely observed in HTSC [1]. As the
field decreases from sufficiently high values, a = 0 and

J, (x) = ~J, in the entire sample except close to the
edges. %e therefore may simplify the above equations
by removing the a —x2 terms and obtain

JY (x) =
—J
—JE,

orb&x&e,
a(x&b,
e(x&8',

Jif(x) (x x), 0&x &0(a'-x') (b'-x') vW —b + QW —e-"
X jn

Qe2 —b'

H„yp
be +

~

I ~ —
~

(W2 —b2)(W2 —e'-)
4m. Wd ( yp)

and —J~ (~x ~) for x & 0, and

0, /x[&a or b&fx/&e,

a, (x) = . &~J.& txi » ("'-")("-')

a & fx[ & b or lxl ) e.

Re{f (x)) is given by the Cauchy integral

Re{f(x)) = —P
b dr/Im {F(1))

x2 —t2

1+ —p
y

dt/I {F(t)}
x2 —t2

The constraints on a and b are given by B,(~) = 0,
and f(e) = 0 in order to provide a continuous solution
at (x~ = e; we take e = W —d/2 for increasing H, )
H~. The above elliptic integrals are readily evaluated
numerically and the resulting distributions are shown in
Figs. 2(c) and 2(d). As the applied field is increased,
a decreases and b increases, so that the vortex-filled
regions expand rather symmetrically in both directions
at moderate critical currents corresponding to b~ = 0.5.
In the low J, limit, the two vortex-filled regions merge
rapidly, and the process continues similarly to the zero
critical current case. In the strong pinning case, J,&&JE,
the vortex-filled regions expand only inward and the

where yp = J,/Jz. At high positive fields b = e = W—
d/2, and the edge current is JE = J, —Jb. = J,.(1—
I/yp) because Jb is a reversible current which has the
same polarity for both ascending and descending field
in contrast to J,. [11]. JF changes direction as the
polarity of the edge vortices changes. As the field
decreases, b = W —d/2, while e increases until e = W.
At this point the applied field is still positive and
substantial, H„= (2J,d/c) ln(4W/d); however, the edge
field is zero and becomes negative as H„& H„, and
hence J~ = J,(1 + I/yp). A unique situation occurs;
negative vortices cannot penetrate into the sample as long
as J„,(W —d/2) & J,. + Jb, but the current cannot rise
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FIG. 3. The current (a) and field (b) profiles in decreasing
H, At H, /H„of 0, —.0.1, and —0.22, positive vortices are
removed from the sample; at lower fields, negative vortices
start to penetrate. Maximum magnetization is obtained at
H„/H, i

= —0.22.
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FIG. 4. Calculated full magnetization loops for various values
of J, showing the zero-field peak and the irreversible magneti-
zation at J, = 0.

above J, as long as the positive vortices are present. As
a result, new vortex-free regions nucleate at the edges
and grow into the sample, characterized by a gradua1
decrease of b and e and the condition dJY/dx = 0 at
x = b. This process is accompanied by a significant
increase in the current density and the magnetization.
Figure 3 shows the resulting current and field profiles,
and the magnetization loops for various J, values are
shown in Fig. 4. The vortex-cleaning process continues

up to negative field values on the order of —H~ where the
maximum magnetization is achieved when b = b;„=
W/Ql + (W /e —I)/y and e = W —d/2. As the
field decreases further, the negative vortices penetrate into
the sample and annihilate the remaining positive ones, and
the magnetization decreases. This zero-field peak in the
magnetization may be further significantly enhanced in

the presence of BL barriers.
We have used novel sensitive GaAs/AIGaAs 2DEG

Hall-sensor arrays to study vortex penetration and dynam-
ics in Bi2Sr2CaCu208 single crystals. The sensor arrays
of up to 11 elements were in direct contact with the crys-
tal surface, so that B,(x) was directly measured. Sensors
of various active areas in the range of 3.5 X 3.5 p, m to
50 & 50 p, m with sensitivity better than 0.1 G were used,
and several various crystals were investigated. The ob-
served vortex behavior is in very good agreement with the
above derivations and will be discussed in detail elsewhere.
Here we present only the unique observation of vortex pen-
etration and accumulation in the center of the sample. Fig-
ure 5 shows the measured B,(x) profiles as the sample is
gradually heated after a field of 10 6 has been applied at
low temperatures. As T, = 90 K is approached, 0,1 and

H~ decrease, allowing more vortices to penetrate at a con-
stant applied field [12]. Very similar behavior is observed
at a constant temperature as the applied field is increased, in
striking agreement with the calculated profiles in Fig. 2(b).
This behavior is a direct consequence of the geometrical
barrier in thin flat samples.

In conclusion, we have derived analytical solutions of a
new geometrical barrier which governs vortex penetration
and dynamics in flat samples of type-II superconductors in
perpendicular field. The effect was observed experimen-
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FIG. 5. Experimental field profiles in Bi2Sr2CaCu208 single
crystal at various temperatures with 1 K increment. As the
temperature increases, additional vortices penetrate and expand
the vortex-filled region in the center of the sample.
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the geometrical barrier are enhanced significantly in the
presence of Bean-Livingston surface barriers.
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