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Circuit Theory of Andreev Conductance
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Conductance of small normal metal structures adjacent to a superconductor is determined by coherent
Andreev reflection. We show that under certain limitations the conductance can be found by means of
an extended circuit theory. The theory deals with two types of elements: tunnel junctions and diffusive
conductors and provides the basis for practical calculations. A new device proposed illustrates the
advantages of the theory.
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What is the resistance of a normal metal structure
in series with a superconductor? Common sense readily
prompts that it must be the resistance of the normal struc-
ture. It is known from early days of superconductivity
that this prompt is misleading. The reason for this is the
energy gap in the superconductor. Normal electrons hav-

ing energies below the gap thus cannot drain off into su-

perconducting part of the system. This implies that the
only mechanism of low voltage, low temperature charge
transport is Andreev reflection [1]: normal electron re-
flects from the normal-superconducting (NS) interface as
a hole transferring a charge Ze to the superconductor. We
will refer to the conductivity of the NS system as Andreev
conductivity, to stress the change brought by the super-
conductor.

Early studies mostly concentrated on the resistance of
a NS interface itself [2]. Lately it has been understood
that the Andreev reQection is an essentially coherent phe-
nomenon (see, e.g., [3,4]) and interference between the in-

coming electron and outgoing hole persists in the normal
metal at mesoscopically large distances from the interface.
Therefore Andreev conductance of a sufficiently small
structure is a property of the whole structure but not only
the NS interface. The space scale involved is in fact the
same characterizing the proximity effect. If we assume
diffusive electron transport, this scale g = $278/s, 27

being diffusivity, a being the typical energy of the elec-
tron (or the hole). A good estimation for a is max[T, e V],
V being the voltage applied to the structure [5]. The
recent advantages in microtechnology make possible the
fabrication of controlled devices of such a size. The fresh
example is an experimental realization of a NS quan-
tum interference device [6] described in practical terms
in Ref. [4]. There is an urgent need in theoretical devel-
opments providing for quantitative analysis and design of
such devices.

The problem has been tackled recently by differ-
ent methods. The authors of Ref. [7] use the traditional
nonequilibrium superconductivity approach [8]. Many in-
teresting results can be obtained in the tunneling Hamil-
tonian framework [4]. The problem can be treated within
a scattering formalism [9]. Unfortunately direct computer

simulations [10] can only deal with unrealistically small
structures. Alternative analytical work stopped due to
insufficient knowledge about transmission matrix of a
mesoscopic conductor. Despite recent progress in this di-
rection [11],the problems arising are much more difficult
to handle than the original one.

I am certainly in favor of the first approach mentioned
since it is the most general one and picks up only rele-
vant physics. We show that under quite general assump-
tions the technical complications may be lifted and the
problem can be formulated in terms of a comprehensive
circuit theory. From now on, the calculation of Andreev
conductance is a subject of technical rather than theoreti-
cal physics.

The paper is organized as follows. First we show
how to get to circuit theory starting from equations of
Refs. [7,8]. The necessary limitations will be spelled out.
Then the rules of the theory will be formulated. Taking
simple examples, we demonstrate consistency with other
approaches. To show the power of the method developed,
a new device will be considered in the final part of the

paper.
Let us consider a normal metal structure adjacent to one

or more superconducting terminals. There may be sev-
eral normal terminals biased at different voltages. There
may be interfaces inside the structure such as tunnel junc-
tions. Physics of electric conduction in such a system can
be treated with nonequilibrium superconductivity equa-
tions. Those are written for Keldysh Green's functions
in coinciding points [7,8]. Those are 4 x 4 matrices de-

pending in a stationary case on space coordinates and en-

ergy. They can be subdivided onto 2 x 2 matrices made

up from usual and anomalous Green functions (we use
"check" for 4 X 4 and "hat" for 2 x 2 matrices):

gR ~ F~A g+A

Here advanced and retarded functions determine the char-
acteristics of the energy spectrum of the system in a given
point whereas G sets particle distribution over these en-

ergy states and thus directly related to the electric corrent
and other physical quantities. It is assumed that the size
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of the system at least in a transport direction greatly ex-
ceeds Fermi wavelength and elastic mean free path, this
makes diffusive approximation sensible. In this approxi-
mation, nonequilibrium superconductivity equations re-
semble a standard diffusion equation and read [7,8]

D(x)G G + [H, G] =0,

0 = er, + ir„Re[a, (x)]+ irYrm[A(x)].

Here 5 is superconducting pair potential, ~ are Pauli
matrices, and square brackets denote a commutator of
two matrices. A unitary condition holds for G: G2 = 1.
The similarity becomes closer if it is possible to skip
the rightmost term in (2). We do so, and now we spell
limitations under which it is a true thing to do. The
left term is of the order of 17/L2, L being the system
size, or, more precisely, the size at which the resistance
of the structure is being formed. In the normal metal
5 =—0 and the right term is of the order of e. Thus
we need a sufficiently small system: L « $. It implies
the following: (a) The temperature is low enough: T «
17/L2, T « h. (b) The voltage is low enough: V «
27/L2, V « h. The last limitation below is given by
the fact that we use stationary equation. If there had
been several superconducting terminals in the structure
biased by different voltages, it would have given rise
to nonstationary Josephson-like effect which we do not
intend to treat here. So that, (c) all superconducting
terminals are at the same voltage. Let us set this voltage
to zero.

Under these limitations, (2) takes the compact form of
a conservation law for a matrix current:

j' (x) = 0, j (x) = o-(x)G G. (3)

Here o.(x) is specific conductivity in the normal state.
We made use of the fact that it is directly proportional
to diffusivity. If there are interfaces in the structure,
they give boundary conditions for (3). These conditions
have been derived in [12] and can be written in a
comprehensive form

N j (x) = g(x) [G)(x),G2(x)], (4)

N being a vector normal to the interface at a point x,
g(x) being the conductance of the interface per unit area
at the same point, and 1, 2 refer to different sides of the
interface.

To proceed, we recall the equations describing the
conductivity of the metal structure in normal state. The
following are evident:

a - - aj (x) = 0, j (x) = —o.(x) u, (5)

j being electric current density, u being electrostatic
potential at a point x. The current through the interface is
proportional to the voltage drop:

f(e) can be associated with the distribution function of
the quasiparticles. We substitute this into Eqs. (3) and

(4) getting equations for f(e). In the normal terminals,

f(e) = tanh[(e —eV;)/2T], V; being the voltage of the
ith terminal. Since Eq. (3) does not depend explicitly
on energy, the same is true for equations for f(e) We.
can thus integrate them over energy expressing current in
terms of g(x) = fde[f(e) —tanh( e/2T)] /e, f(x) mea-
suring a deviation of the quasiparticle distribution from
the equilibrium.

We note that at zero energy GA, this greatly simplifies
the resulting equations. It is convenient to parametrize
G~ = sr, s2 = 1 (we will use boldface for vectors in
the space of Pauli matrices keeping Greek indexes for
usual ones). We will call s a spectral vector since
G"(x) determines local spectral properties of the metal.
The spectral vector has a simple physical meaning: its
z component determines a factor by which the local
density of states at zero energy is reduced in comparison
with that one in the normal metal. Its latitude shows what
is the phase of the Cooper pair amplitude induced in a
given point x.

Taking all this into account, we rewrite general equa-
tions (3) and (4) in terms of s, g [13]:

8 . 8j (x) = 0, j (x) = cr(x) -f(x), (8)

N j (x) = g(x)sls2pl (x) —$2(x)], (9)
.a .a 8j (x) = 0, j (x) = o-(x)s(x) X s(x), (10)

One knows how to get from Eqs. (5) and (6) to
circuit theory. One separates the structure on the resistive
elements finding from Eqs. (5) and (6) how the current
through each element relates to the voltage difference
across it. Conservation of the current in nodal points of
resulting network (second Kirchhoff rule) will give the
relations necessary to find the voltage and the current in
every point of the network.

The key idea of the innovation being currently pre-
sented is to do the same with Eqs. (3) and (4). The only
distinction is that we have to deal with matrix currents and
matrix drops.

We can simplify Eqs. (3) and (4) further. The goal
will be to separate equations determining the equilibrium
spectral properties of the structure from those determining
the propagation of nonequilibrium carriers in the structure.
To do so, we introduce the standard [8] parametrization of
the matrix G:

G = —If (e) G"(1 + rg) —(1 + r, ) G"

+ f( e) G—" (—1+ r) —(—1+ r)G"
(7)

N j (x) = g(x)[u&(x) —u2(x)]. (6) N j = g(x)sl X s2.
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Boundary conditions at the terminals read

sJJz, g=v;
at all normal terminal;

(12)

s, = cos@, sY = sing, g = 0

at all superconducting terminals.
Now it becomes clear what is the structure of the

extended circuit theory. Real electric current is associated
with g; its magnitude is proportional to a drop of g over
an element. The coefficient of proportionality does not
depend on spectral vectors for diffusive conductor and
does for tunnel junction. In contrast to a normal circuit
theory, we thus have two different kinds of resistive
elements. We can say that the induced superconductivity
does not change the conductivity of the diffusive parts
but renormalizes the tunnel junction conductivities. The
spectral vectors determining such a renormalization shall
be found from Eqs. (10) and (11). It is important that
the spectral vectors can be determined from the circuit
theory as well. Solving Eqs. (10) and (11) we find how
the spectral current relates to the drop of the spectral
vectors over an element. For a diffusive conductor we
obtain

s) X s2
arccos(s is q).

1 —(sis2)
(14)

The magnitude of the current is thus proportional to the
angle between si and sz. Similar but different relation
holds for a tunnel junction:

RTI = S& X S2.

As in a standard circuit theory, the condition of current
conservation in nodal points and terminal conditions
complete the set of relations which we need to find
spectral vectors.

For practical calculations, it is very instructive to
picture a network on a hemisphere, as done in Fig. 2. The
coordinate of a point of the network corresponds to the
spectral vector in this point.

Summarizing, we give the rules of the resulting circuit
theory.

(I) Andreev conductance is the same as for normal cir-
cuit with renormalized tunnel conductivities. Renormal-
ization factor is given by scalar product of spectral vectors
belonging to two shores of the tunnel junction.

The following rules set spectral vectors:
(II) Spectral vector in a normal reservoir (~ z (north pole

of the hemisphere). Spectral vector in a superconductor
iz (equator of the hemisphere). Its longitude corresponds
to the superconducting phase.

(III) The spectral current is perpendicular to both
spectral vectors at the ends of an element. Its magnitude
is given by either I = Go4 for a diffusive conductor
or I = Gr sin@ for a tunnel junction, @ being the angle
between the spectral vectors at the ends.

(IV) Vector Kirchhoff rule holds in nodal points of the
network. That is, vector spectral current is conserved in
the nodal points.

Let us start with the simplest examples (see Fig. 1).
Suppose we have a tunnel junction in series with a diffu-
sive conductor. According to (I), the Andreev resistance
of the circuit is given by R& = R& + R&/cosu, u being
Latitude of a spectral vector in the point A. To determine
u, one equates the spectral current in the tunnel junction
with that one in the diffusive conductor:

1 = sinu/RT = (m. /2 —a)/Rg). (16)

R + R(Ri Rz)
(17)

R(R2

Let us apply the theory to analysis of a more complex
network. Let the current flow from the normal electrode
to two superconductors that have different phase (Fig. 2).
A dramatic feature of Andreev conductance is its depen-
dence on this phase difference P [4,6,14]. This suggests
that the electron coming from the normal side is not re-
flected as a hole from one particular superconductor but
rather from both. A novel feature of the device cur-
rently proposed is that the tunnel junctions are in all three
branches of the circuit. This is practical since in this case
the Andreev conductance is of the order of the normal
conductance of the circuit provided all three junction re-
sistances are comparable.

FIG. 1. Simplest NS circuits.

These two relations implicitly determine RA. The result
coincides with that of [11]and, in relevant limits, with re-
sults obtained in [4,7].

Another important example is two tunnel junctions in
series. We will assume that the metal between the junc-
tions is disordered enough to assure diffusive transport but
the resistance of this metal is negligible compared with
junction resistances. Again, from the first rule we ob-
tain R~ = R~/cosu + Rz/ sinn. An equation for u reads
I = sinn/R& = cosu/Rz. This yields
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I I I lG»» G

S S

0 = gI = sq X [GlsN + G(ss + ss')]

this yields (s2 = I!)

(18)

s~ = [G~s~ + G(ss + ss )l/gG& + 2G2(1 + cosP).

(19)

FIG. 2. Three-junction NS quantum interference device.
Spectral vectors in the network are mapped onto hemisphere.

Let us map the network onto hemisphere (see Fig. 2).
According to (II), spectral vectors at points N, S, S' are set

by terminal conditions. The conservation of the spectral
current in the nodal point [rule (IV)] determines the
spectral vector sA in this point:

0

FIG. 3. Phase dependence of three-junction NS quantum in-
terference device conductivity. The parameter G/G, increases
from the lowermost to the uppermost curve taking values 0.01,
0.333, 1, 3, and 100.

(FOM), and I acknowledge the financial support from the
"Nederlandse Organisatie voor Wetenschappelijk Onder-
zoek" (NWO).

From this one readily obtains renormalization factors
s&sivs s for each junction and calculates the actual con-
ductance

GA
4Gi G2 cos2(P/2)

Gi + 4Gzcosz(P/2)
(2o)

Limiting cases are constructive to look at

4G
G~ = cos (P/2) at Gi&&G

Gi
(21)

Q2
GA = at Gi (& G. (22)

2G cos( 2)

In both cases, the Andreev conductance is smaller than
the normal conductatice but the phase dependence is
quite different (see Fig. 3). For the first limit, the
conductance is maximal at P = 0 and smoothly goes to
zero with increasing P. For the second case, it grows
with increasing P reaching the maximum at P very close
to n and then sharply drops to zero. This feature of the
device proposed makes it very practical for measuring
small phase differences.

In conclusion, the circuit theory has been constructed
for Andreev conductance of arbitrary complex normal-
supercondueting networks. It allows us to clarify the
complex theoretical constructions used previously and to
design new interference devices.

I am indebted to C. W. J. Beenakker, H. Pothier, and
J. E. Mooij for very instructive discussions of the re-
sults. This work is a part of the research program of
the "Stichting voor Fundamenteel Onderzoek der Materie"
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