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We deduce the effects of quantum interference on the conductance of chaotic cavities by using
a statistical ansatz for the 8 matrix. Assuming that the circular exmembles describe the S matrix,
we find that the conductance Suctuation and weak-localization magnitudes are universal: they are
independent of the size and shape of the cavity if the number of incoming modes, N, is large.
The limit of small N is more relevant experimentally; here we calculate the fuH distribution of the
conductance and find striking differences as N changes or a magnetic field is applied.
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The effect of quantum interference on transport
through microstructures has been intensively investi-

gated and is one of the main subjects of mesoscopic
physics [1]. For difFusive transport in disordered struc-
tures, both microscopic perturbative and macroscopic
random matrix theories give a good account of the phe-
nomena. In the latter case [2], one assumes that the to-
tal transfer matrix can be built up multiplicatively using
transfer matrices chosen from a simple statistical ensem-
ble with only symmetry constraints applied. The success
of this theory is perhaps the best theoretical demonstra-
tion of the ubiquity of mesoscopic interference effects.

More recently, interest has focused on quantum trans-
port in ballistic microstructures —structures in which im-

purity scattering can be neglected so that only scattering
from the boundaries of the conducting region is impor-
tant [1]. Quantum interference effects in such structures

[3—9] depend on whether the classical dynamics is regular
or chaotic [10]. Recent experiments [ll] have detected a
difference between the transport properties of nominally

regular and chaotic structures.
The theoretical work on this subject [3—7] has con-

centrated on either numerical quantum calculations or
semiclassical theory. On the other hand, it has been pro-
posed [8,9] that chaotic scattering in the quantum regime

[10] should be described by a random matrix theory for
the S matrix. The emphasis in both that work and re-

cent work on the S matrix of disordered structures [12]
is on the eigenphases of S. The eigenphases, however,
are not directly connected to transport because they in-

volve both re8ection and transmission. In contrast, we

derive the implications of a random 8-matrix theory for
the quantum transport properties and provide numerical
evidence that this theory applies to the class of ballistic
microstructures investigated experimentally. In this way
we obtain experimentally accessible predictions for the
quantum transport properties of chaotic billiards.

A quantum scattering problem is described by its S
matrix. For scattering involving two leads (see Fig. 1)
each with N channels and width W, we have

where r, t are the N x N re8ection and transmission ma-

trices for particles from the left and r', t' for those from
the right. In terms of S, the conductance for spinless
particles is [1]

G = (e /h)T = (e /h)Trfttt). (2)

Current conservation implies S is unitary, SSt = I, and
for time-reversal symmetry (8 = 0) S is symmetric.

We concentrate on situations where the statistics of the
scattering can be described by assigning to S an "equal a
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FIG. 1. The magnitude of the (s) weak-localization cor-
rection Mid (b) conductance fluctuations as s function of the
number of modes in the leads, ¹ The numerical results for
B = 0 (squares with statistical error bars) agree with the
prediction of the COE (dotted line), while those for B g 0
(triangles) agree with the CUE (dsshed line) . The inset shows

a typical cavity. The numerical results involve averaging over

(1) energy at fixed N (50 points), (2) 6 different cavities ob-

tained by changing the stoppers, snd (3) 2 magnetic fields for

B P 0 (BA/Pp = 2, 4 vrbere A ls the ares of the cavity).
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Performing the trace over channels in Eq. (2), we obtain

(T) —N/2 = 6ipN/(4N + 2)—~ (—I/4)hip, (3a)

N(N + 1)' 1

(T) (2N+ 1)z(2N+ 3) 8 '

N2 1

4(4¹—1) 16 '

(3b)

where the limit is as N —+ oo.
We make several comments concerning these results.

(1) Previously, semiclassical theory and numerical calcu-
lations suggested that the weak-localization correction,
(T) —N/2, and the magnitude of the conductance fluc-
tuations, var(T), are independent of the size of the sys-
tem for chaotic billiards [3]. This is the analog of the
"universality" of the conductance fluctuations in the dif-
fusive regime [1]. Since the number of modes is propor
tional to the size of the system (N = int[kW/x]), our
N ~ oo results shoio that the conductance fluctuations
and weak localization are universal within the random S-
matrix theory. (2) In the large N limit, var(T) in the
presence of time-reversal symmetry is twice as large as

priori distribution" once the symmetry restrictions have
been imposed. In particular, the possibility of "direct"
processes, caused, for instance, by short trajectories and
giving rise to a nonvanishing averaged S matrix [8,13],
is ruled out. The appropriate ensembles are well known
in classical random matrix theory [14] and are called the
circular orthogonal ensemble (COE, P = 1) in the pres-
ence of time-reversal symmetry and the circular unitary
ensemble (CUE, P = 2) in its absence. These ensembles
are defined through their invariant measure: the mea-
sure on the matrix space which is invariant under the
appropriate symmetry operations. To be precise [14),
dp, (S) = dp, (S'), where S' = UoSVo, and Uo, Vo are arbi-
trary fixed unitary matrices in the case of the CUE with
the restriction Vo = Uo in the COE. Numerical evidence
for the validity of this random matrix theory for describ-
ing quantum-chaotic scattering can be found in Ref. [8].

Perhaps the most widely studied mesoscopic trans-
port effects are the magnitude of the conductance
fluctuations —how much the conductance varies as a mag-
netic field or gate voltage is applied —and the size of the
weak-localization correction to the average conductance
at B = 0 [1]. We therefore start by deriving (T) and
var(T) where we use an integration over the invariant
measure as the average. Such integrals have been evalu-
ated previously [15], and we find that

f d) (S)lt.bl' =
2N2N+ bgp'

() ()

0 v(~) vr

' v(') 0
(4) ~ ( )

where r is the N x N diagonal matrix of the {r) and
the v~'~ are arbitrary unitary matrices except that v& ~ =
(v(i) )+ and v(4) = (v( ))+ in the presence of time-reversal
symmetry. It is a general property of measures on vec-
tor spaces [18] that a difFerential arc length written in
the form do = p b g bdx dxb implies that the volume
measure is dp(V) = gdet(g) P dx . In our case the
differential arc length is simply do2 = Tr{dStdS). Sub-
stituting for S the form in Eq. (4), one finds (P = 1, 2)

dp(S) = Ps({r)) «
a

d) (v"),

where the joint probability distribution of the {r)is

in its absence, as in the diffusive regime, demonstrat-
ing the universal effect of symmetry. (3) Both quantities
show some variation in the small N regime typical of the
experiments [11];for instance, the ratio of var(T) in the
presence and absence of symmetry is not 2. (4) The val-

ues obtained in the N ~ oo limit are the same as those
from an equivalent random matrix theory for the Hamil-
tonian in which the billiard is described by the Gaussian
ensembles and the conductance follows from coupling the
billiard to leads in a random way [9).

The predictions of the random matrix theory are com-
pared to the conductance of a stadium billiard in Fig. 1
computed using the method of Ref. [16]. In these cal-
culations, the S matrix varies as a function of energy
because of the cavity resonances. We estimate that the
resonances are moderately overlapping for N = 1 and
that the width to spacing ratio increases linearly with N.
The basic assumption (ergodic hypothesis) is that through
these fluctuations S covers the matrix space with uniform
probability. This should apply to billiards in which the
effect of short nonchaotic paths is minimized. We there-
fore use a stadium billiard in which (1) a stopper blocks
any direct transmission between the leads, (2) a stop-
per blocks the whispering gallery trajectories which hug
the half-circle part of the stadium, and (3) the stadium
is asymmetrized to break all reflection symmetries. We
obtain excellent agreement between the energy averages
found numerically and the invariant-measure ensemble
averages introduced above. In particular, both the vari-
ation at small N and the ratio of var(T) in the presence
and absence of time-reversal symmetry are verified.

Motivated by this good agreement, we consider more
detailed predictions of the random 8-matrix theory: we
derive the full distribution of T for small N and the statis-
tics of the eigenvalues of tt), denoted {r). We obtain
these results by expressing the invariant measure in terms
of a set of variables that includes the {r). Any unitary
matrix of the form in Eq. (1) can be written as [17]
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Pz((r)) = &z (6a)

(6b)
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dp(v&'1) is the invariant (Haar's) measure on the unitary
group [19],and Cp are normalization constants [20].

The distribution of T = g ir follows by integra-
tion over the joint probability distribution. This can be
carried out for small N; for instance, in the trivial case
N = 1, io(T) = 1 for the CUE and ui(T) = 1/2~T for the
COE. For N = 1 —3 the m(T) derived analytically from
the random matrix theory are plotted in Fig. 2 and com-
pared to numerical data for billiards. Note the dramatic

difference behoeen the CUE and COB in the single mode

case, and the deference nothin each ensemble betioeen the

N = 1 and N = 2 cases The .results for N = 3 are close
to a Gaussian distribution.

The agreement between the numerical and theoretical
results in Fig. 2 is very good in terms of the dependence
on both I3 and N [21). These effects should be observable
in experiments, for which N is typically small, and would

provide a clear test of the applicability of random 8-
matrix theory to experimental microstructures.

Though not experimentally accessible, the (r) are the-
oretically interesting because of their fundamental rela-
tion to the conductance. We obtain further information

by writing the joint probability density in the form

R~+y+ ~~++
i I I I I I
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FIG. 2. The distribution of the transmission intensity at
fixed N = 1, 2, or 3 in both the absence (first column) and
presence (second column) of a magnetic field. The numerical
results (plusses with statistical error bars) are in good agree-
ment with the predictions of the circular ensembles (dashed
lines). Note the striking difference between the N = 1 and
N = 2 results and between the 8 = 0 and 8 g 0 results for
N = 1. For N = 3 the distribution approaches a Gaussian
(dotted lines) . The cavities used are the same as those in Fig.
1; for 8 g 0, BA/$0 = 2, 3, 4, and 5 were used.

1.0—
I-

0.5-

2.0

with Vz(r) = 0 and Vi(r) =
2 lnr. This is exactly the

form of the joint density in the global-maximum-entropy
approach to transport in disordered systems [2] and in the
Gaussian ensembles [14]. Many statistics of such distri-
butions are known asymptotically as N -+ oo [14,22—25].
For instance, the known form of the asymptotic two-point
correlation function [22,25] can be used to obtain

the potential V(r). Therefore the asymptotic value of
var(T) is the same for a large class of random matrix
theories, a stronger form of "universality" [24].

In the CUE, the form of the joint density in Eq. (7)
is suitable for the random matrix theory method of or-
thogonal polynomials [2,14]. Because V = 0 and the (r)
are restricted to [0, 1] the Legendre polynomials are ap-
propriate [26]. In terms of these polynomials, the exact
eigenvalue and two-point correlation function are [22,26]

1 1

var(T) = dr dr'rr'pz(r, r') -+ 1/8P. (8)
0 0

W

Pp((r)) =cpexp( —P ) in~a—ra~+) ,vy(r).
-a&b C

N~
p( ) =

4 1 [ N( ) —2aPiv(a)Piv-i(a) + P~ i(a))

pg(r, 7') = p(r)b(r —r')/N —[Ppg(a)P~ i(a ) —P~ i(a)P~(a )] /16(r —r'),
where a = 2r —1. Using the asymptotic expansion of the Legendre polynomials as N -+ oo and some smoothing,
one finds that p(r) ~ N/7rgr(1 —r) [26] and recovers the expression in Refs. [22,25] for the asymptotic two-point
correlation function. Previous work has shown that the statistics of the eigenvalues (r) follows that of the Gaussian
unitary ensemble in the large N limit [26).

In summary, are have derived the consequences for quantum transport on the assumption that the 8 matrix of a cha-
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otic cavity follows the circular ensembles. We have shown
that the magnitude of both the conductance fluctuations
and the weak localization is universal in the large N limit,
at least within the class of systems considered here [27].
The small N limit is most relevant experimentally, and
here we find a striking dependence of the full distribution
of T on both N and magnetic field (Fig. 2). In closing, we

emphasize that we have neglected the "direct" scattering
due to short paths ((S) = 0); since such scattering is
important in many chaotic cavities, the eKect of these
processes remains an important open question, which, in
principle, could be investigated using the information-
theoretic model of Ref. [13].

We thank R. A. Jalabert for several valuable discus-
sions. One of us (P.A.M.) appreciates the kind hospital-
ity of the Wissenschaftkolleg zu Berlin where part of this
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Note added. —While writing this paper we received a
preprint by R. A. Jalabert, C. W. J. Beenakker, and J.-L.
Pichard which contains some similar material. We thank
J.-L. Pichard for sending us this preprint.
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