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Instability and "Pearling" States Produced in Tubular Membranes by Competition of
Curvature and Tension
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%e investigate the stability of tubular fluid membranes by perturbing them with optical tweezer~.
peristaltic instability appears, with wavelength on the order of the tube circumference, characterized bs
tautness and suppression of curvature fluctuations in the membrane. %e interpret this in terms of l

model that includes a surface tension term in the elastic energy, and describes a transition to stable,
finite amplitude peristaltic states. At high amplitudes the experiment reveals new dynamic states ot'

"pearls" interconnected via thin tubes along which they travel and aggregate.

PACS numbers: 68.10.—m, 02.40.—k, 47.20.—k, 87.22.Bt

Stability of the cylindrical geometry is one of the most
basic and instructive hydrodynamic issues. As discovered
by Savart [1], a cylinder of fluid is unstable and breaks
up into droplets. This forms the basis for everyday
phenomena such as the drops on a spider's web, and
has numerous technological applications, e.g. , the coating
of thin wires [2]. The instability's origin was shown
to be surface tension by Plateau [3), who noticed that
for wavelengths larger than a cylinder's circumference,
oscillatory ("peristaltic" ) perturbation of the cylinder can
reduce the surface area while retaining its volume. This
problem first prompted Rayleigh [4] to investigate issues
of the most unstable wavelength, since in practice the
experiment was showing selection of a unique wavelength
longer than the circumference. This system is by now
a paradigm for similar instabilities in fields like plasma
physics and astrophysics [S].

In this Letter we consider stability of membrane tubes,
in which the question of surface tension is subtle and deli-
cate. Membranes are usually described by a Helfrich cur-
vature energy [6] (which stabilizes tubes) while surface
tension energy is assumed negligible. As predicted [7]
and elegantly demonstrated experimentally [8], there are
two contributions to membrane tension. Bare compress-
ibility, in which stretching at the molecular level gives
a linear ratio of excess area to tension, is energetically
very unfavorable. However, thermal curvature Auctua-
tions produce roughness and "fold up" the membrane at
all scales, giving an entropic contribution to the tension:
"unfolding" the membrane by tension (e.g. , by pulling on
it) arrests these fluctuations and gives an excess area that
is logarithmic with tension. In this way geometric forms
with high volume to surface ratio (e.g. , spherical vesicles)
can store tension but still have the same area per molecule
as a fluctuating, floppy vesicle.

Our experimental setup is by now standard [9,10] com-
bining an Ar laser with a phase contrast microscope (63x,
1.4 N.A. objective) to form a trap of diameter —0.3 p, m.
We used DGDG and DMPC (Sigma) lipid bilayers, with
reported [8] bending moduli tr = 0.4 x 10 '2 and 0.6 x
10 '~ erg, respectively, under standard protocol [11,12]

with no prehydration. Hydration was performed at high
temperature (-45 'C) under an induced flow. In this way
tubes a few hundred pm long and oriented along the How

are randomly formed. The tubes are anchored at both
ends at massive lipid globules typically 10 p. m in diam-
eter. Tube radii Ro of about 0.3 to ~ p, m were observed
comprising of one or two bilayers [13]. The existence ot
membrane tubes is an interesting issue on its own [14].

Figure 1 characterizes the initial stages of the insta-
bility. The tube [Fig. 1(a)] is stable (over many hours)
before application of the tweezers, its thermal fluctua-
tions visibly evident. The application of the tweezers
[Fig. 1(b)] for typical times of 0.2 —2 sec and using from
20 to 60 mW (increasing with radius Ro) initiates a si-
nusoidal instability which develops [Fig. 1(c)] to a fi-

nite amplitude peristaltic state with a visible reduction
in fIuctuations. The instability propagates out in both
directions from the point of application of the tweezers
at a constant velocity. We could measure the outward
propagation velocity v in smaller tubes only, measuring
velocities between 10 and 70 p, m/sec, with 30 p, rn/sec
typical. The natural velocity scale for propagation of a

FIG. 1. (a) Section of DMPC tube. (b) Initial instability upon
tweezing. Tweezers marked by the circular reflection. State
(c}eventually decays to state {a}. Bar is 10 p, m.
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curvature mode in a medium with viscosity g is v„=
Ir/PRO which for DMPC in water at 40 C and with

Rn = 1 p, m gives v„=100 p, m/sec. Similarly, for sur-

face tension the velocity scale is v = rr/rI and the mea-
sured propagation velocity v = 30',m/sec would require
o. = url —0.2 & 10 4 erg/cm~. This may be compared
to molecular compressibility values [8] of —102 erg/cm2.

The suppression of fluctuations [8,16] along with the
existence of the well known capillary (Rayleigh) instabil-

ity of cylinders hints at the existence of a surface tension
o. competing with the curvature. To understand the com-
bined effect of surface tension and curvature we look at
the energy
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F=~ 2HdS+o. dS.

Based on the experiment and on the analysis for the
Rayleigh instability [5] we limit ourselves to surfaces that
are axisymmetric and in which the axis is unperturbed.
For a surface given in parametric form by G(z, @,p) —=

p —R(z) = 0 in axisymmetric cylindrical coordinates the
area element is dS = 2n.RQ1 + R2. The mean curvature
H is [16]

RRzz l —Rz

2R(1 + R2)3&2
' (2)

We introduce the nondimensional variable x = qRp and

the normalized ratio of surface tension to curvature s =
o Rn/Ir as our control parameter, with Rp the unperturbed
tube radius as before. We restrict ourselves here to analy-
sis of sinusoidal perturbations of the form R(z) = po +
e sin(qz). Uolume conservation is introduced through the

constraint pp = Rp 1 e" 2Rp.
Defining f(s, x, e) the energy difference per unit length

between the peristaltic and straight cylinder, we evaluated

f(e) numerically for different values of s and x, and found
for x ( 1 a transition from the stable cylinder at low s to a
new finite amplitude peristaltic state in which curvature
balances the destabilizing surface tension. The model
gives the transition at s, (x) = 4 for x = 0.8, giving for o.

a value on the order of 4'/Rn = 2 x 10 4 erg/cm2. At
these small tensions (« 0.5 dyn/cm) we expect [8] o. to be
dominated by entropic contributions from the constraint of
curvature fluctuations. An even smaller amount of tension
must already exist just to keep the tube anchored at its ends.

The transition is shown in Figs. 2(a) and 2(b) for s
values close to s, . For low values of s all values of x give
f(e) ~ 0. As s increases a band of x opens up for which

f(e) becomes negative and has a minimum at a finite e.
The transition can be first [Fig. 1(a)] or second [Fig. 1(b)]
order, with a tricritical point at s = 4 and x = 0.785. As
s ~ we recoup the classical Rayleigh instability, where
f(e) decreases monotonically with e for x & 1.

To study the model analytically we expand the energy
in orders of e. To order e we identify the band of
unstable wavelengths whose width expands from 0 to 1

-0.6
0.08

FIG. 2. Excess energy per unit length f in units of 10 'a/Ro.
(a) x = qRO = 0.79. A first order transition from top to
bottom: s = 4.19, straight tube stable; 4.1933, straight stable,
peristaltic metastable; 4.1937, straight and peristaltic modes in
equilibrium; 4.1945, peristaltic stable, straight metastable; 4.196,
peristaltic stable. (b) x = 0.78. A second order transition from
top to bottom: s = 3.985, 3.9988, 3.999, and 3.9993.

as s increases from 0 to ~. The new peristaltic states
become apparent when we consider terms up to order e
(odd powers vanish upon integration over a wavelength,
details will be given elsewhere [13]).

The phase diagram defined by this Landau-type expan-
sion is shown in Fig. 3 for the relevant wave numbers

0 & x & l. In the limit of small s (curvature dominated)
the straight cylinder is stable to perturbations of a11 wave-
lengths. For s ~ ~ we regain the absolute instability
driven by surface tension. The lower line defines a tran-

sition from the straight cylinder to a sinusoidal peristaltic
stable state, which is second order for long wavelength

(x & 0.785) and first order for 0.785 ( x & 1. The model
predicts a limited band of s for which the sinusoidal insta-
bility appears. The amplitude of the stable state increases
with s, approaching the cylinder radius at the top line.
This bounds the region of applicability of the model and
beyond it we expect pearls to form. Above (below) the
first order transition line is a region (thin lines) where the
straight (peristaltic) cylinder is metastable with respect to
the peristaltic (straight) one.

Similar to the Rayleigh instability, energy consider-
ations alone do not predict the most unstable wave-
length. To do that requires a linear stability analysis of
the flow induced in the cylinder. Comparing to the ex-
periment, we note that the wave number in Fig. 1(b) is
x = 0.82, while in Fig. 1(c) it is slightly larger than 1.
This indicates that we are already bordering on the
pearling stage, which is described below.
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FIG. 3. Stability diagram in the x, s plane. Bottom bold line is
the instability line. Thin lines denote regions of metastability.
Above the top line the model is no longer adequate and we
expect a pearling state to evolve.

We now turn to longer or stronger application of the
tweezers in the experiment, which leads to the pearling
state shown in Figs. 4 and 5. "Pearls on a string" are pro-
duced, isolated spheres that are interconnected by regions
that have collapsed to very thin tubes (0.1 —0.3 p, m ra-

dius, depending on Ro). These spheres (Fig. 4) travel
along the tube towards the point of application of the
tweezers, aggregating there. They bring with them ex-
cess volume and surface, leaving behind them thin tubes.
The velocities for DMPC are typically 0.1 —10 p, m/sec
and decay as V = Vpe ",with a = 0.02 sec ' and Vo =
5 p, m/sec (but our measurement does not rule out a con-
stant discrete decrement of the velocity every time a pearl
reaches the central cluster, a process that approximates
an exponential decay in time). The spheres are taut as
they move, all fluctuations damped by the surface tension.
Note that in the decay of the pearling state (described be-
low) pearls lose this tautness, and we find it significant
that floppy pearls do not travel.

The motion of the pearls indicates [17] a velocity
scale v~ set by the Poiseuille flow of water in the very
thin tubes which the motion of the pearls causes. v,

Rt VP/4rt with 7'P the pressure gradient and R~ the thin

tube radius. Taking as a rough estimate 7P —tr/R ~ L, the

Laplace pressure difference between pearl and tube over a
typical distance L between IItearls and with s = o-R&2, /x.

we obtain tj~ = strR~/rILRO Us. ing s =- 10 and from
Fig. 4: Ro = 1.S p, m, R~ = 0.2 p, m, I = 13 p, m gives v,
on the order of 1 p, m/sec, in reasonable agreement with

the measured velocities.
It is instructive to study the relaxation of the pearling

state and the subsequent release of tension. When the
tweezers are released the sinusoidal state of Fig. l decays
immediately back to the straight cylinder (on the time
scale of a second). The pearling state, however, lasts over
many minutes, as shown in Fig. 5. ~here an especially
large tube was chosen to demonstrate the structures. In
such tubes the linear sinusoidal stage is skipped and
the initial stages are irregular, probably because the trap
size is smaller than the wavelength. The surface tension
is most apparent close to the point of; application of
the tweezers [Fig. 5(c)j, both geometrically and because
fluctuations are absent. Once the tweezers are turned
off, tension is not immediately released. Its slow release
is limited by the water that has to flow through the
minuscule passages between the spheres, apparent in

Fig. 5(c), which are below our 0.2 p, m resolution.
Figures 5(d) —5(f) shows the late stage of the relaxation

and coarsening of the structure in a region where the

FIG. 4. Pearls moving on a string —nonlinear, late stages of
an Ro = 1 p, rn DMPC tube. Time between frames is 2 see,
starting about 20 sec after the laser was shut off. Bar is 10 p, m.

FIG. 5. Time development and relaxation of instability. (a)
t = 0, application of the tweezers (= bright spot) onto a
fluctuating DMPC tube (b) t = 9 sec, (c) t = 30 sec, tweezers
off. (d) —(f) are 100 ttt. m away from (a) —(c). (d) t = 223 sec.
('e) t = 577 sec, and (f) t = 754 sec. Bar is 10 y, m.
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structure is periodic. In Fig. 5(d) production of typical
necks between the pearls is apparent. Recent work [18]
has shown the necks to be minimal surfaces, thus stable.
The pearls are floppy at this stage, with reduced tension.
Coarsening typically occurs through the formation of two
wavelengths from three.

The limit s ~ can be reached experimentally by very
high intensity or prolonged application of the tweezers.
Indeed, we found that in this way we could splice the
tubes at the point of application. Note that reaching
high values like s = 100, where the Rayleigh instability
dominates, still leaves the tension o. —10 2 erg/cm2
very small compared to the molecular compressibility.
Furthermore, for a finite closed tube moderate application
of the tweezers produces a breakup into isolated spheres.
We attribute this to the limited surface area —even a small

change in area yields high values of s.
Full elucidation of the action of the tweezers on the

membrane is a central and intriguing issue which is,
however, beyond us at this stage. The Ar laser produces
locally both heating and strong electric field gradients, and

we cannot conclusively determine which is repsonsible for
the effect observed. Heating can produce surface tension
changes in a monolayer [20] and shape transformations
in vesicles [12]. However, because the membrane's
thickness is at the molecular level, the absorbing volume
is mostly water and heating should be small [10]((1 'C).
A strong uniform electric field was shown to cause
tension [19] and formation of pores ("electroporation")
[21] which are essential in some shape transformations

[12]. We believe the main action of the tweezers to be
pulling of lipid into the trap, with some subsequent loss of
surface to the solution [13].

There are additional mechanisms which produce peri-
staltic shapes in tubes. Deuling and Helfrich [22] showed
that spontaneous curvature leads to a peristaltic mode with
finite wave number. Bruinsma [23] has pointed out that
van der Waals forces would also tend to destabilize cylin-
ders. Pearling occurs when polymers are anchored onto
the membrane by hydrophobic side groups [26]. This was
explained by a spontaneous curvature, but an interesting
possibility is that the polymers actually arrest fluctuations
and thus induce tension. Mechanical stress, e.g., by a mi-
crotubule growing in the vesicle [24) or a latex bead em-
bedded in the vesicle wall and pulled by optical tweezers
[25], also causes pearling of tubular outgrowths.

To summarize, in our picture surface tension is created
by the local action of the tweezers. In a cylindrical
geometry the long range instability of the membrane tube
can be separated from the local, complex effect of the
laser. Our model for the energy indicates that even a
small tension, well within the entropic regime, suffices to
set off the instability. As a result curvature and tension
compete to form peristaltic modes and dynamic pearling
states in membrane tubes.

We acknowledge useful discussions with F. Brochard,
N. Dan, J.-P. Eckmann, R. Granek, V. Lebedev, and
R. Zeitak, and an especially fruitful interaction with
P. Nelson and S. Safran.
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