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Scaling Behavior in the P-Relaxation Regime of a Supercooled Lennard-Jones Mixture
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%e have performed molecular dynamics simulations of a supercooled atomic liquid, The ~eIf-

intermediate-scattering function in the P-relaxation regime has a power-law time dependence and

temperature dependence consistent with the mode-coupling-theory prediction of a von Schweidler law,
with exponents that are very close to satisfying the exponent relationship predicted by the theory. The
diffusion constants have a power-law dependence on temperature with the same critical temperature.
The exponents for diffusion differ from those of the relaxtion time, a result that is in disagreement with

the theory.
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In the last few years a remarkable amount of activity
has taken place in the field of the glass transition and
the dynamics of supercooled liquids. This activity was
mainly spawned by the development of sophisticated
theories and novel experimental techniques with which
the predictions of these theories could be tested. The
most outstanding example of these theories is the so-
called mode-coupling theory (MCT) which was proposed
by Bengtzelius, Gotze, and Sjolander and, independently,
by Leutheusser [1]. The central point of MCT is the
prediction of the existence of a dynamic singularity when
the temperature of a supercooled liquid is lowered below
a certain critical temperature T, This point of view is
in contrast to other theories that try to make a connection
between the sluggish dynamics of glass forming materials
in the vicinity of the glass transition and an underlying
thermodynamic phase transition.

For temperatures close to T, , MCT makes detailed
predictions about the behavior of all correlation functions

(X(0)Y(t)) whose dynamical variables X and )' have a

nonvanishing overlap with the density fluctuation pq for

any wave vector q. These predictions have been verified
in experiments and computer simulations of supercooled
liquids on a qualitative basis and also on a quantitative
basis. However, there are also experiments and computer
simulations which show that the predictions of the theory
are not always fulfilled [2,3]. The reader can find a

good introduction to the theory in the review articles

by Gotze and Gotze and Sjogren [4] and most of the
relevant references to the experiments and simulations in
references [3,4].

Since experiments and computer simulations have given
mixed results as far as the validity of MCT is concerned,
more tests are clearly necessary. Moreover, quantitative
tests of the theory would be useful in order to understand
whether MCT merely suggests a method for performing
scaling analyses of experimental data or whether it is also a
correct and accurate theory of the exponents and exponent

relations. Since MCT was originally developed for the
description of simple supercooled liquids, we have decided
to test in a quantitative way the validity and applicability
of the prediction of MCT for such a system and this I etter
reports some of our findings.

Some of the most important predictions of MCT deal
with the behavior of the correlation functions in the so-
called P-relaxation regime. At low temperatures the time
dependence of correlation functions of supercooled liq-
uids shows a broad shoulder or even a plateau when plot-
ted versus the logarithm of time. The approach to and
the subsequent departure from this plateau defines the
P-relaxation regime [5]. One of the main predictions of
MCT for the behavior of the correlation functions in this
P-relaxation regime is the existence of a von Schweidler
law. This law states that a correlation function i'(t) can
be written in the form

d(t) = t —.t[tir(T)] .

Here j' is the height of the plateau, often also called the

nonergodicity parameter, and A and b are positive con-
stants. A and f are predicted to be smooth functions o1'

temperature if T - T, and to be dependent on the type of
correlation function investigated but the exponent b should
be the same for all correlation functions. Furthermore,
the theory predicts that the relaxation time r (T ) show s a

power-law divergence at T = T, with an exponent y which
is related to the value of b. Although the predictions of
MCT concerning the von Schweidler law have experirneo-
tally been found to be true for some systems, it has so
far not been observed convincingly in computer simula-

tions of simple liquids. However, for a lattice gas, such
a behavior has been observed [6]. But since a simulation
of a different lattice gas has sho~n remarkable disagree-
ment with the predictions of the theory [3], the applica-
tion of the results of MCT to these kinds of systems may
be problematic. Therefore we decided to perform a large
scale computer simulation of a simple liquid in order to
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investigate, among other things, the dynamics of super-
cooled liquids in the p-relaxation regime.

Molecular dynamics computer simulations are particu-
larly well suited for testing the predictions of MCT since
they allow the measurement of many different types of
correlation functions. This freedom a11ows the perfor-
mance of more stringent tests of the theory than would
be possible for experiments. In addition, simulations al-
low the measurement of the correlation functions in a very
direct way. This is in contrast to experiments, where in

most cases a considerable amount of interpretation and
manipulation of the raw data has to be done in order to
obtain the desired quantities. The main problems with
simulations are the limited size of the systems one can
study and the time span that a simulation can cover. Since
MCT is a theory of equilibrium, it is of utmost importance
to make sure that the simulated system is equilibrated at
all temperatures investigated. A very recent simulation
of a glassy system has shown that failure to equilibrate
the system leads to a completely different relaxation be-
havior [7]. In order to overcome this problem we have
performed a simulation that covers a time range that is
more than an order of magnitude in time larger than pre-
vious molecular dynamics simulations that have studied
relaxation in supercooled liquids.

The system we are dealing with in this work is a binary
mixture of classical particles. Both types of particles (A
and B) have the same mass m and all particles interact

by means of a Lennard-Jones potential, i.e., V(r) =
4m[(tr/1)' —(o./r) j. The parameters e and o. of the
various interaction potentials were chosen as follows:
&AA 1 0~ ~AA 1.0~ ~AB 1 5~ ~AB 0 8~ ~BB
and crBB = 0.88. These potentials were truncated and
shifted at a cutoff distance of 2.5'. The number of A

particles was 800, and the number of B particles was 200.
These potentials are similar to the ones used by Stillinger
and Weber for their simulation of amorphous Ntspppp [8].
In the following, all quantities will be expressed in a
system of units in which the unit of length is crAA, the
unit of time is (mo»/48Egg)'~, and the unit of energy
is eAA. The equations of motion were integrated with the
velocity form of the Verlet algorithm with a step size of
0.01 and 0.02 at high and low temperatures, respectively.
The system was equilibrated at high temperatures and, by
coupling it to a heat bath, subsequently slowly cooled
down to low temperatures. At each temperature the
system was equilibrated for a time which was equal to
or longer than the time it took all the correlation functions
investigated to decay to zero to within the noise. After
equilibration, a long molecular dynamics calculation was
performed for the calculation of the diffusion constant
and the correlation functions. The length of this run was
also equal to or longer than the time for the correlation
functions to decay to zero. The longest equilibrium runs
were those for the lowest temperature and had a duration
of 10 time units, which would correspond for an atomic
liquid to a real time of about 30 ns. This is about
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FIG. 1. Self-intermediate-scattering function F,(q, t) for A
particles vs t. q = 7.251cr~, the location of the first peak in
the structure factor S»(q). Temperatures (from left to right):
5.0, 4.0, 3.0, 2.0, 1.0, 0.8, 0.6, 0.55, 0.5, 0.475, and 0.466.

an order of magnitude longer than previously reported
comparable simulations. To improve the statistics further
we determined the correlation functions for at least eight
different starting positions in phase space. More details
on the simulation will be presented elsewhere [9].

In the foHowing we will mainly concentrate on the
investigation of the dynamics in the p-relaxation regime.
Since the presence of activated, or hopping, processes
will modify the prediction of the simple version of
MCT (in which these effects are neglected) [4], one has
to determine the importance of these processes for the
system under investigation. By studying the self and
distinct part of the van Hove cor elation function we have
found that on the time scale of the p-relaxation there
is no secondary peak in the self part and no peak at
r = 0 in the distinct part [10]. Thus we conclude that

hopping processes are not relevant on the time scale of the
p-relaxation and can therefore be neglected in the analysis
of the data [9]. Thus the comparison of our results with
the simple version of the theory is justified.

The space Fourier transform of the self part of the
van Hove correlation function gives the self-intermediate-
scattering function F,(q, t) [11]. Figure 1 shows the time
dependence of F,(q, t) for the AA correlation function.
The value of q is q,„, the location of the first maximum
in the structure factor Szz(q) for the AA correlation
function. The following observations can be made: (1)
For all temperatures investigated the correlation functions
decay to zero to within the noise of the data. This
is strong evidence that the runs were long enough to
equilibrate the system. (2) For high temperatures the
correlation functions decay quickly to zero. When the
temperature is lowered the formation of a shoulder at
intermediate times (on a logarithmic time scale) can be
observed. For the lowest temperatures this shoulder forms
almost a plateau and we can clearly observe the two
step relaxation behavior observed for strongly supercooled
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liquids. (3) For times around 15 time units the correlation
functions for low temperatures show a small bump.

In order to test for the presence of a scaling behavior
we plotted the data from Fig. 1 versus a rescaled time

t/T(T) The value of the scaling time r(T) was chosen
at each temperature such that F, (q, r) = e '. In Fig. 2
we show the resulting plot. We can clearly recognize
the presence of a master curve. This master curve can
be fitted very well by a power law of the form given

by Eq. (1) with f = 0.783 and b = 0.488 ~ 0.015. This
fit is included in the plot as well. Since the fit is valid
for almost 3 orders of magnitude in rescaled time, it is
definitely significant. Thus we find a power law with
an exponent b and an offset f that are independent of
temperature. This is exactly the behavior predicted by
MCT for the behavior of the correlation function in the
later part of the P-relaxation region, i.e., a von Schweidler
law with a nonergodicity parameter f and an exponent b

that are independent of temperature.
In order to test whether the power law observed in

the P-relaxation region is just the short time expansion
of a Kohlrausch-Williams-Watt (KWW) law, @(t) =
f exp[ —(t/r)t'], which is known to be often an excellent
approximation for the long time behavior of correlators
in glassy materials, we fitted the long time behavior of
our correlation functions with such a functional form. We
found that such a fit is very good but that the extrapolation
of the fit to intermediate times, i.e., to the P-relaxation
regime, is not good at all since the fit falls below the data.
Thus we can conclude that the power law observed here
is not just the short time behavior of the KWW law.

MCT predicts that the scaling time r in Eq. (1) scales
with temperature as r ~ (T —T,) r. We fitted the relax-
ation time with such a power law and found, for the A and
8 particles, the value 0.435 for T, . The exponent y is 2.5
and 2.6 for the A and B particles, respectively. MCT also
predicts a relationship between the exponents b and y.
The value found above for b, when combined with this
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relationship, predicts that y = 2.7, which is very close to
what we actually found. Thus the exponent relationship
of MCT is confirmed to within the precision with which
we can obtain the exponents. In Fig. 3 we plot 7. ' versus
T —T, (dotted curves). From this plot we recognize that
the power-law behavior is observed for 0.466 ~ T ~ 0.6.
Although this range is not that large we recognize from
Fig. 2 that it is only for this temperature range that the
curves follow the master curve. Thus from the point of
view of MCT we have a consistent picture with respect
to this range. A fit to the data with a Vogel-Fulcher law

gave accordance with the data over a temperature range
which is a bit larger than the one where the power law is
observed [9]. However, this observation is not in contra-
diction with MCT since the main point is that the theory
works where it is supposed to work, namely, close to T, .

MCT predicts that the von Schweidler law should be
present not only for q = q,.„but all values of q and that
the exponent b should be independent of q. We tested this
prediction by computing F,(q, t) for different values of q
in the range 6.5o.» ~ q ~ 9.6o.», i.e., from q values a

bit less than q,„, the location of the peak in the structure
factor 5»(q), to values up to the first minimum of S»(q).
In Fig. 4 we plot these correlation functions vs t" with

b = 0.488. The part of the curves that are straight lines
are power laws with exponent b. We recognize that this
is the case for t~ lying between 2 —3 and about 60. This
corresponds to a time interval of 4—9 time units to 3600
time units. Thus we find that this prediction of MCT also
holds for this system.

0.85

U

0.75

I »ss&sl ~ s i & i&sl

O.85

0.55

0.45

1O' 1e' iO' 1e' 10 10

FIG. 2. Self-intermediate-scattering function for the A par-
ticles for q = 7.251o.„„' vs rescaled time t/r(T) (solid lines).
Dashed curve: Fit with von Schweidler law. Temperatures
(from right to left) as in Fig. 2.
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FIG. 3. Inverse relaxation time (dashed curves, T, = O-43")
and self-diffusion constant with error bars (dotted curves,
T,. = t).435) for A (circles) and 8 (squares) particles vs T —T, .
Also shown are the fits with a power law (solid lines).
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FIG. 4. Self-intermediate-scattering function for A particles
for 6.5 o~ q ~ 9 6o~ (from. top to bottom) vs tb with von
Schweidler exponent b = 0.488, T = 0.466.

We have also done similar calculations for the B parti-
cles and found a similar behavior as reported here for the A

particles. The von Schweidler exponent b for the B parti-
cles is about 0.445 ~ 0.015, and thus quite close to the one
of the A particles. Since MCT predicts these two expo-
nents to be the same, this observation is also in accordance
with the theory. Note that this kind of universality, i.e., the
presence of a von Schweidler law for all types of correla-
tors and that the von Schweidler exponent is independent
of, or only weakly dependent upon, the correlator, is one
of the main predictions of the theory.

So far we have dealt only with the behavior of the
correlators in the P-relaxation regime. But MCT also
proposes an intimate connection between this regime and
the relaxation on the longest time scale, the so-called
a-relaxation regime. For example, the theory predicts
that the constant of diffusion D should show a power-
law divergence at T, with an exponent y that is the same
as the one for the relaxation times. We have determined
D by fitting a straight line to the long time asymptote of
the mean squared displacement. We have fitted D with a
power law of the form D ~ (T —T,)» and for both types
of particles found the critical temperature T, to be 0.435.
The exponent y was 2.0 for the A particles and 1.7 for
the B particles. These results are shown in Fig. 3, where
we plot D versus T —T, in a double logarithmic way
(dashed curves). Thus, in accordance with MCT, we find
that the critical temperature for the constant of diffusion
is the same as the one we found for the relaxation time

However, the y exponents are slightly different for
the diffusion constants of the two species, and both values
are significantly different from the y obtained from the
scaling time. These findings are in contradiction to the
predictions of MCT.

In the range were the data show a power-law behavior
(i.e., T ~ 1.0) we also tried to fit it with a Vogel-Fulcher
law, i.e., D ~ exp[ E/(T ——To)] and found that this type
of fit is clearly inferior to the one with the power law.

In summary, the predictions of MCT concerning the
von Schweidler law are fulfilled in quite an impressive
way for the system investigated here, but the relationship
predicted by MCT between the temperature dependence
of the von Schweidler relaxation time and the temperature
dependence of diffusion do not hold. For the P-relaxation
regime we have presented only the results of the simula-
tion that deal with the departure of the correlation func-
tions from the plateau. But to make a stringent test of the
theory it is clearly necessary to check not only a few pre-
dictions of the theory but as many as possible. We have
done this and the results will be presented in Ref. [9].
These results seem to indicate [9] that the behavior of the
correlation functions in the first part of the P-relaxation,
i.e., the critical decay, is not as well described by the the-

ory as the second part, which is described in this Letter.
Nevertheless, considering the approximations that have to
be made in order to derive the statements of the theory,
the accordance of its predictions with the results presented
here is most remarkable.
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