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Behavior of a Falling Paper
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Behavior of a falling paper in a two-dimensional fluid is investigated by introducing a simple
phenomenological model including the lift and friction terms. Five falling patterns are discovered
with the increase of friction coefficients: periodic rotation, chaotic rotation, chaotic fluttering, periodic
fluttering, and simple perpendicular fall. Irregular motions of the fail are explained in terms of low-
dimensional chaos.

PACS numbers: 47.52.+j, 05.45.+b

Anybody must have noticed that the falling motions of
a paper or a leaf are very complex. Indeed, in daily life
various motions are observed when one drops a light and
thin body such as a paper or leaf. Sometimes a falling
paper's motion may seem to be random. Sometimes it
looks very regular. It may fall, for example, downward
in one direction with rotations, while rarely fluttering to
the right and left. It is quite natural to wonder whether
these irregular motions are chaotic or not.

Thus far, however, there has been no answer to this
question. A possible reason for the absence of the
studies to answer this question lies in the difficulty of
the problem: One must take into account the complex
interactions between the air (fluid) and the paper. The
most direct approach is the use of the Navier-Stokes'
equation with time dependent boundary conditions. This,
however, requires an extremely large amount of computer
resources even if some approximations are adopted.

In the present paper we introduce a simple model
for a falling paper from a different view. Only the
indispensable minimum information from fluid mechanics
is taken into account. Although this approach may be
a crude approximation, one may be able to construct a
model with only a few variables, by which we can answer
whether chaos can explain irregular motions of a falling

paper. We will show that the dynamics of a falling paper
can be reproduced qualitatively well by a simple model.
For the modeling we make the following assumptions.

Here, we consider a two-dimensional case, and we will

assume that the motions take place in an X-Y plane.
(1)The paper is treated as a rigid body, whose thickness

is assumed to be 0. Thus the body is characterized only

by its length I and mass mp.
(2) The paper is subjected to three forces: lift, friction,

and gravity. For the calculation of lift, we assume that the
fluid is incompressible and perfect. Since the perfect fluid

does not bring any friction, we add the phenomenological
friction force ad hoc. To be specific, the lift and friction
terms are calculated as follows.

(2.1) Lift: By the assumption (2) we can use the theory
of a two-dimensional incompressible perfect fluid. By
the celebrated Kutta-Joukowski's theorem, lift can be

calculated if a uniform fiow of fiuid blows at a static
object [1]. Assuming that the fluid motion is stationary
at each moment, the lift is thus calculated by making the
Galilean transformation to the frame at which the velocity
of the paper is zero.

(2.2) Friction: The Kutta-Joukowski's theorem also
tells us about drag, but it is zero. In order to include the
friction seen in a real (viscous) fluid, we introduce friction
terms proportional to the velocity of the paper [2].

It is natural, in general, to assume that the components
of the friction perpendicular and parallel to the paper
are not equal. The friction will be small if the paper
is oriented parallel to the direction of fall, and large if
the paper is oriented perpendicularly to the direction of
fall. Thus we include two friction coefficients k& and

k~~ per unit mass. The former gives the friction against
the motion perpendicular to the paper, while the latter
corresponds to the parallel motion.

Using (1) and (2) we can construct our model as
follows. Let (x, y) denote the position of the center
of mass, (u, v) the velocity in the X-Y plane (u =
x =—dx/dt, v = y

—= dy/dt, t: time), 8 the angle of the

paper, and to(= 8) the corresponding angular velocity.
See Fig. 1. The motions of a paper are described by these
variables.

By the assumption on the friction terms, the compo-
nents of the friction force perpendicular and parallel to
the paper are straightforwardly obtained as:

F„=m~k~(u cos 8 ——u sin 0},

F~~
= m~k~~(u sin 0—+ ucos 0),

where mp is the mass of the paper. Thus, the friction at
the center of mass is given by

—F& sin 0 + F~~ cos 0

= m p [—(k, sin'- e + k(( cos' e)u

+ (k~ —
k~~) sin 0 cos Ov],

I + cos 0 + F~~ sin 0

mp[(k —
k~~) sin 0 cos Ou

—(k~ cos 0 + k~~ sin 8)v],
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FIG. 2. Phase diagram at p = 0.1 and I = 1.0 m. There
are five falling patterns: PR (periodic rotation), CR (chaotic
rotation), CF (chaotic fluttering), PF (periodic fluttering), and
SPF (simple perpendicular fall). For larger f (=—k~/k~~) the
patterns can clearly be distinguished. As f gets smaller,
the chaotic regions become narrower and finally disappear at

= 1.0.

FIG. 1. Schematic illustration of the paper and the forces.

while the friction to the rotation is given by

Fg = —m~k~1 cu/12. (2)
With the help of the Kutta-Joukowski's theorem, a plate
in a flow of the velocity U with the angle @ is sub-
jected to the lift L = lp~wU2cos 4, and the moment
M = Ll sin P/—4, where pt is the density of the fluid.
Using the Galilean transformation, we obtain the lift and
momentum of the paper in Fig. 1 as follows:

A phase diagram against the change of k& and f is shown
in Fig. 2.

If k& is small enough, the paper falls regularly to the
right side (left side) with a counterclockwise (clockwise)
rotation after the transients have died out. The direction
of rotation depends on the initial condition. Hereafter we
call this periodic rotation (PR). The falling pattern of the
paper is given in Fig. 3. As k& is increased, a period
doubling cascade is observed as the period of the rotation.
The orbit of a period-8 limit cycle is plotted in the u-v
plane in Fig. 4.

If we increase k& further, the u-v plot gets much
denser, while the falling pattern of the center of mass
appears similar to the one of PR. We have calculated the
maximum Lyapunov exponent to determine whether the
system is chaotic or not. The exponent turns out to be
positive, hence implying that the motion is chaotic. The

u = —(k~ sin 8 + k~~ cos 8)u + (kz —
k~~)

X sin 8 cos 8v ~ m. p V cos(a + 8) cos a,
v = (k~ —k~~)sin8cos8u —(kzcos 8 + k~~ sin 8)v

~ n.pV cos(a + 8)sin a —g,

L, = ~lpga. V cos(a + 8) cos a,

L» = ~lp~nVcos(a. + 8) sin a, (3)

M = l pIn. V co—s(a + 8) sin(a + 8)/4,

here, V —= Qu2 + v, a —= arctan(u/v) and the upper
[lower] sign denotes the condition (v & 0, 0 & a + 8 &
n) or(v)0, n. &a+8-&0) [(v&0, n&a+-
8 & 0) or (v ~ 0, 0 & u + 8 & n.)]. Combining the lift
and friction terms and the gravity force [Eqs. (1), (2), and

(3)], we obtain the following set of ordinary differential
equations governing the motion of the paper:

kgb —(3n.—p V /l) cos(a + 8) sin(u + 8),

8 = M, (4)

where p is the ratio of the density of the Quid to that of
the paper (p = pt l/m~).

We have carried out the numerical integration of
Eqs. (4) with the fourth order adaptational Runge-Kutta
method.

In our model, we have found five basic falling patterns
with the change of parameters k~, f(= k~/k~~), p, and I. —

FIG. 3. The locus of the falling paper at the PR regime within
the period-1 region. k~ = 4.0, f = 100, p = 0.1, and l = 1.0 m.
Each dot denotes the center of mass by a time interval of
0.01 s, while the paper is drawn every 0.1 s.
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FIG. 4. The u-v plot of the period-8 region with k& ——4.84,
f = 100, p = 0.1, and / = 1.0 m, after transients have decayed.
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FIG. 6. Strange attractor projected to the u-u plane in CF with
k~ = 5.0, f = 100, p = 0.1, and l = 1.0 m.

strange attractor in the u —v plane is plotted in Fig. 5.
Hereafter we call this chaotic rotation (CR).

The parameter region providing CR is not wide. When
k& is increased a little bit more, the paper falls downward
swaying right and left chaotically. Hereafter we call this
chaotic Puttering (CF). See Fig. 6 for the orbit in the
u-v plane. Note that the symmetry with respect to the
right and left direction is restored here. The horizontal
displacement Bx(t) during the fall of t seconds are well
described by the random walk. Indeed the distribution
of Bx(t) is well fit by P(8x) ~ exp[ —(Bx)2/4Dt] with

the diffusion constant D (D = 13.8 m /s for k& = 6.0).
Note that the displacement is proportional to time t in
the PR and CR regimes. When k& is increased further, a
transition to regular motions via intermittency is observed.
The portion of regular motions becomes larger with the
increase of k&. An example of the locus of the fall is
given in Fig. 7.

For larger k&, the motion becomes regular again. The

paper sways to the right and left regularly, as is shown in

Fig. 8. The orbit depicts a figure eight in the u-v plane.
We call this periodic fluttering (PF).

The amplitude of the sway decreases with the further
increases of k&, until it finally becomes zero. The paper
then falls perpendicularly, without any horizontal motion.
In other words, u = cu = 8 = 0 Oand . v = —g/k~ as
time goes to infinity. We call this simple perpendicular
fall (SPF) [3]. A large value of k& implies a strong
viscosity. This fall can be easily understood by imagining
the fall of a needle in honey.

The maximum Lyapunov exponent is plotted with the
change of k& in Fig. 9. We note that some drops are
visible within the CF region, corresponding to windows.
At the largest window seen in Fig. 9, the locus is plotted
in Fig. 10. The horizontal symmetry. is again broken as
in PR and CR, although this falling pattern itself is rather
similar to PF.

For p = 0.1 and l = 1.0 m, the attractor is unique
except for the right/left choices in PR and CR regimes.
When p or l is decreased, we have seen coexistences of
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FIG. S. Strange attractor projected to the u-v plane in CR
with k+ ——4.9, f = 100, p = 0.1, and / = 1.0 m.

FIG. 7. The motion of the center of mass in CF with

k~ = 9.75, f = 100, p = 0.1, and l = 1.0 m, plotted over
600.0 s. The initial condition is set to u = 0.0, v = 0.0,
~ = 0.0, and 6I = 1.0.
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