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Long-Period Orbits in the Stark Spectrum of Lithium
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We report observation of the signature of very-long-period orbits in the Stark spectrum of lithium in
a regime of classical chaos. We identify recurrences associated with the orbits parallel to the electric
field, including those beyond the 100th return of the primitive orbit. We also identify recurrences duc
to scattering of an incoming wave from one orbit into another by the alkali-metal core.

PACS numbers: 32.60.+i. 03.65.Sq, 05.45.+b

Periodic-orbit theory provides an important link be-
tween quantum theory and classical dynamics in regimes
of disorderly (chaotic) motion [1]. The closely related
closed-orbit theory [2,3] predicts the photoabsorption
spectrum of a system from knowledge of its closed clas-
sical orbits. Long-period orbits are of particular inter-
est because they determine the resolution the theory can
achieve, and because they play a crucial role in deter-
mining how well the theory’s predictions converge to the
true quantum spectrum. However, long-period orbits are
difficult to study experimentally and theoretically. Con-
sequently, the limits of periodic-orbit theory are not well
understood. We report here an experimental study of the
spectrum of lithium in an electric field that reveals the
signature of very-long-period closed orbits in a regime of
disorderly motion.

An important result of periodic-orbit theory is the
Gutzwiller trace formula, an expression for the level
density that is obtained from the trace of the semiclassical
Green’s function [1]:
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(atomic units). The index k distinguishes the primitive
periodic orbits: the shortest period orbits for a given set of
initial conditions. T} is the period and Sy is the action of a
periodic orbit. Each primitive orbit retraces itself, leading
to new orbits with periods nT; and actions nS;, where n is
an integer. Hence, every repetition of a periodic orbit is
another periodic orbit. The quantity y. is related to the
stability of an orbit, and a,, is the orbit’s Maslov index.

Spectroscopic experiments measure transition proba-
bilities, not level densities. Delos and co-workers have
made contact between periodic-orbit theory and experi-
ment in a formulation known as closed-orbit theory [2,3].
This theory, which is similar to the trace formula in
derivation, yields the oscillator strength as a function of
energy. Only orbits that begin and end at the nucleus are
important in closed-orbit theory. Physically, these are as-
sociated with the outgoing waves that are generated when
a tightly bound electron is excited to a high-lying state.
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According to closed-orbit theory, the average oscillator
strength density is given by a smooth background plus an
oscillatory sum of the form [3]

Df(E.F) = > Y Agsin(nS; — aum/2 ~ du). (2)
k n=]

where E is the energy and F is the electric field. A,
the recurrence amplitude of a closed orbit—contains
information about the stability of the orbit, its initial and
final directions, and the matrix element of the dipole
operator between the initial state and a zero-energy
Coulomb wave. a,; is the Maslov index, and ¢,; is an
additional phase that depends on details of the orbit.

Computing a spectrum with resolution AE requires
summing over all closed orbits of the system with pe-
riods up to 27A/AE. For low resolution, where only
short-period orbits need to be considered, the theory has
enjoyed considerable success [2,4,5]. However, extend-
ing the theory to high resolution presents a formidable
challenge. Not only does the number of periodic orbits
proliferate exponentially with period or action for chaotic
systems, long-period orbits are difficult to compute be-
cause they become increasingly unstable and sensitive to
numerical details [1].

We have studied the Stark spectrum of lithium, a
system that is similar to hydrogen except for one crucial
difference: the classical motion of lithium displays a
transition to chaos, whereas the motion of hydrogen is
always orderly. The classical dynamics of hydrogen
in an electric field follows a simple scaling law. Its
Hamiltonian (H = p>/2 — 1/r + Fz, atomic units) can
be rescaled using the substitutions » = F'>F and p =
F'*p, so that H = F~"2H has no explicit dependence
on the field. As a result, the classical dynamics depends
only on the scaled energy e = EF /2 not on E and F
separately. This classical scaling is a good approximation
for lithium.

The scaled action of a given closed orbit, Sy =
F~/*5,, depends only on €. If the spectrum is recorded
while the field and energy are varied simultaneously so
as to keep e constant, the classical dynamics remains
constant [6]. This approach has been used on several
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systems [6—8]. An orbit’s scaled action and recurrence
strength can be obtained directly from the Fourier trans-
form of the spectrum. This Fourier transform is called
the recurrence spectrum because, in principle, each peak
is located at the scaled action of a periodic orbit, and
the height of each peak is proportional to that orbit’s
recurrence strength. We have applied this approach to
the lithium Stark spectrum with higher accuracy than
previously achieved in such studies, making it possible to
search for high-action closed orbits.

In applying these ideas to lithium, an essential point
is that the potential of lithium differs significantly from
1/r only near the nucleus where the electron penetrates
the core charge of the lithium ion. We have modeled
this classically by adding a short range potential to
the hydrogenic Hamiltonian, chosen to give the proper
quantum defects. Within these constraints, a variety of
model potentials yields essentially the same classical
behavior. In particular, as the scaled energy is increased,
lithium shows a transition from regular to chaotic motion
at about € = —16.

This behavior is shown in Fig. 1, which displays
two Poincaré surfaces of section. Below € = —16 the
trajectories form well-defined curves, each curve being a
slice through a two-dimensional torus in four-dimensional
phase space. Regular trajectories are confined to these
tori. At e = —16, some of the tori have been destroyed,
indicating the onset of chaos. At € = —3, the motion
is chaotic throughout most of phase space, though small
regular regions remain.

We have carried out laser spectroscopy on an atomic
beam of lithium in an applied electric field. One laser
excites the 2S5 — 3S two-photon transition. A second
laser excites the atoms to m = 0 Rydberg states in the
vicinity of n = 45. The excited atoms are detected by
electric field ionization. A spectrum at € = —3.000(2)
(the number in parentheses is the estimated error in
the last digit) was obtained by scanning the laser from
—65 to —50 cm™! relative to the zero field ionization
limit, while the scaled field, w = F~!/4, was scanned
between 100 and 120 (atomic units). The absolute error
in w is estimated to be dw = 0.025. The recurrence
spectrum (Fig. 2) was obtained by Fourier transforming
the scaled-energy spectrum plotted with respect to w.
The recurrence spectrum is expected to be accurate for
Smax = /6w = 100 [9].

To verify our methods, the experimental recurrence
spectrum at € = —3.000 is compared with a recurrence
spectrum obtained from quantum computations [10] in
Fig. 2. Agreement is generally good, although there
are some discrepancies which we believe arise from
experimental noise and neglect of the continuum in the
computations.

Closed orbits parallel to the field play an important
role in the spectrum. These form two classes: “uphill”
orbits, directed toward the cathode, and “downhill” orbits,
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FIG. 1. Poincaré surfaces of section in semiparabolic coordi-
nates (u = (r + 2)"/2, v = (r — z)'/?) for lithium m = 0. Top:
Early stages of the breakup of tori are visible in the region
near the core at € = —16. Bottom: Most of the phase space
is chaotic for € = —3, and the near-ergodic orbits are excluded
from small regions by remaining tori.

directed toward the anode. For € = —3.000(2), the first
return of the uphill orbit has a scaled action S = 0.3915,
and the first return of the downhill orbit has §{ = 0.4285.
As a result, the recurrence spectrum is expected to have
peaks at §“ = 0.3915x and §¢ = 0.4285n. In Fig. 3 most
of the prominent peaks for § < 10 are identified as
corresponding to repetitions of the parallel orbits.

Gao and Delos [3] have studied the Stark problem
for hydrogen and have found that every repetition of
the parallel orbits gives rise to new orbits by a series
of bifurcations of these main orbits. The scaled ac-
tion of a newly created orbit is close to the scaled ac-
tion of the parent orbit. With respect to the behavior
of alkali-metal atoms, Eichmann et al. [8] showed that the
recurrence spectra of hydrogen and sodium are similar for
§ < 6. We have found that lithium is similar to hydrogen
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FIG. 2. Lithium recurrence spectrum for € = —3.000(2). A

mirror plot is used for comparison of the experimental spectrum
(top) with the results of a quantum computation (bottom). The
computed spectrum has been normalized to provide comparable
heights.

for § < 8 [11]. However, as shown in Fig. 4, we find
significant differences for S > 8. The existence of extra
peaks in the lithium spectrum as the action is increased is
consistent with the proliferation of closed orbits in chaotic
systems.

For high action, the parallel orbits continue to display
a strong signature in the spectrum. We have identified
recurrences near the 100th return of the uphill parallel
orbit (Fig. 5). This illustrates the power of closed-orbit
theory to associate spectral features with long-period
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FIG. 3. Blowup of experimental data in Fig. 2. Recurrences
corresponding to the parallel orbits are marked with arrows.
Filled circles: uphill orbits. Open circles: downhill orbits. The
number specifies the number of repetitions of the primitive
orbit. The truncated peak at S = 5.5 has strength 5.2. The
truncated peak at § = 9.8 has strength 4.3. The inset shows
detail near § = 2.

1342

[oe]

»

£

\V]

nN

£

[0}

Recurrence Strength [Arbitrary Units}]
o

(o]
o

2 4 6 8 10 12 14 16 18 20
Scaled Action

FIG. 4. Comparison of experimental recurrence spectrum for
lithium (top) with computed recurrence spectrum for hydro-
gen (bottom). Peaks a at § = 9.792(3) and b at § = 13.658(4)
are due to core scattering, as described in the text.

orbits. Not all repetitions are visible in the recurrence
spectrum because their recurrence strengths may be weak
or the repetitions may be masked by other peaks. (In
Fig. 5, the n = 102 and n = 108 repetitions of the uphill
orbit are missing.) Furthermore, numerous additional
peaks are visible in the spectrum. We believe that some
of these extra peaks are repetitions of the downhill orbit,
but their recurrence strengths in the range of Fig. 5 are
generally too weak to permit a definite association.

A number of processes could generate the unidentified
peaks in Fig. 5. In hydrogen, one expects peaks at
repetitions of the orbits which bifurcate from the parallel
orbits. These orbits have scaled actions slightly different
from the repetitions of the parallel orbit and may be
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FIG. 5. Blowup of Fig. 2 at large action. Peaks identified
with uphill parallel orbits are marked with arrows, as in Fig. 3.
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resolved at high action. However, the recurrences due to
these orbits have not yet been calculated.

As pointed out by Gao and Delos [12], core effects can
be understood by considering scattering from one hydro-
genic orbit into another by the alkali-metal core. This
effect gives additional recurrences at the sum of actions
of combinations of closed orbits [13]. Core-scattered re-
currences can be large whenever the amplitudes of their
components are large. For example, in Fig. 4, the recur-
rence at peak a, § = 9.792(3), is located at §f, + 8}, =
9.792(3) [14], indicating that it can be understood as
the core scattered sum of these two recurrences. Simi-
larly, the recurrence at peak b, S = 13.658(4), is lo-
cated near 8¢ + 5% + 5% = 13.654(4) and 3% + 5% =
13.652(4) [15]. However, other recurrences that are found
in lithium but not in hydrogen cannot be reliably iden-
tified using this scheme. Thus, it is uncertain how far
this approach can be applied to compute the high-action
recurrences we observe. Nonetheless, the possibility of
describing a chaotic system in terms of a related separ-
able system by closed-orbit theory is compelling: It would
allow one to compute the closed orbits of an orderly
classical system—eliminating the problem of the prolif-
eration of orbits and the difficulties locating long-period
orbits—and introduce the core-induced chaos quantum
mechanically.

In summary, the high resolution of our experiment
demonstrates the validity of closed-orbit theory at much
higher actions than in previous work and provides experi-
mental evidence for core scattering. The lithium Stark
problem in the regime studied here seems well suited to
probing the limits of periodic-orbit theory.
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FIG. 1. Poincaré surfaces of section in semiparabolic coordi-
nates (u = (r + 2)'2, v = (r — 2)"/?) for lithium m = 0. Top:
Early stages of the breakup of tori are visible in the region
near the core at € = —16. Bottom: Most of the phase space
is chaotic for e = —3, and the near-ergodic orbits are excluded
from small regions by remaining tori.



