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A straightforward microscopic approach is developed to evaluate the distribution of transmission
eigenvalues for a disordered phase-coherent conductor. In the difFusive limit, the calculation gener-
alizes the result of random matrix theory that the universal distribution is not dependent on the
shape of the conductor. Extended defects such as tunnel barriers and gram boundaries were shown
to break the universality. If the resistance of the tunnel barrier comprises Mf of the total resistance,
a drastic change of the distribution is found. This indicates an analog of localization transition.

PACS numbers: 72.10.8g, 73.20.Fz, 73.40.Gk

In recent years, a large body of work has appeared to
reveal the basic properties of phase-coherent conductors
[1]. In such a conductor, a charge carrier difFuses over the
resistive region with no inelastic collision taking place. It
is feasible at low temperatures in micron size junctions.

The physics of such conductors displays many univer-
sal features. The most famous example are the univer-
sal conductance fluctuations (UCF) [2]: the conductance
varies from sample to sample within the value of the or-
der of ez/L It does not depend on material properties of
the conductor and depends only slightly on its shape and
the resistivity distribution. The less known but probably
more striking example is the universal suppression of shot
noise [3]. An excess current noise power in the difFusive
conductor was predicted to comprise exactly one third of-
the classical result P = 2eI. This is believed to depend
neither on the sample shape nor its resistivity distribu-
tion. We show below that this is indeed true.

Both phenomena can be well understood using the con-
cept of open and closed channels [4,5]. The transport
properties of a conductor are completely determined by
transmission matrix t [6]. In particular, the conductance
is given by the Landauer formula

(I)

where we introduce eigenvalues of transmission ma-
trix square (transmissions) T„corresponding to the nth
eigenvector (channel). In a disordered conductor all
channels seem alike, and it is natural to assume com-
parable transmissions for all channels.

Dorokhov [7] was the first to point out that this as-
sumption is irrelevant. In fact, most of the channels
are "closed" possessing exponentially small transmission.
The transport is due to a few "open" channels having
transmissions of the order of unity, and the distribution
of those,

(2)

is universal. The relation (2) can be proven by random
matrix methods [8]. Both methods essentially exploit an

assumption of a uniform quasi-one-dimensional conduc-
tor; that is, they are formally valid only if the length of
the disordered region by far exceeds its width.

I strongly doubted the universality of the result (2). I
had two arguments as follows. (i) Although the result
may be correct for quasi-one-dimensional geometry, the
experience with UCF clearly shows that in general geom-
etry dependence persists. (ii) The result (2) seems to be
valid for any disordered conductor, for any realization of
disorder. Consider a realization at which a tunnel bar-
rier partitions ofF the conductor. It seemed obvious that
the highest transmission through the conductor cannot
exceed transparency of the barrier, this being in con-
trast to (2) since the latter implies that many channels
have transmissions close to unity. These doubts have per-
suaded us to tackle the problem with a straightforward
microscopic technique outlined below. The advantage of
the method used is that it allows one to easily take into
account all the information on the geometrical shape of
the conductor, the distribution, and the properties of the
defects, so that the transmission matrix can be easily
evaluated beyond the quasi-one-dimensional limit where
random matrix methods do not work.

In the framework of the method, we will see that both
arguments given above are in fact wrong. Let us first list
the results obtained.

(i) The result (2) was proven to hold for a diffusive
conductor of arbitrary shape and resistivity distribution,
with no extended defects. The universality of the distri-
bution can be related to the properties of the solution of
the diffusion equation determining the voltage distribu-
tion in the conductor [9].

(ii) Extended defects break the universality. If the
voltage distribution has discontinuities at extended de-
fects such as tunnel barriers, grain boundaries, and in-

terfaces, it cannot be related to the transmission distri-
bution, the latter depending on both properties and lo-
cations of these defects.

(iii) A simple analytical result can be obtained for a
single tunnel barrier which partitions oK the conductor in
such a way that it coincides with an equipotential surface
of the voltage distribution. If the resistance of the barrier
RT is smaller than the resistance of the diffusive part of

l34 003 1-9007/94/73 (1)/134 (4)$06.00
1994 The American Physical Society



VOLUME 73, NUMBER 1 PH YSICAL REVIEW LETTERS 4 JULY 1994

the conductor R~, transmission of some channels is very
close to unity. If RT ) R~, a drastic change occurs:
transmissions cannot exceed some maximal value Tm~„&
1. The channels with T„= 1 relate to delocalized wave

functions, and do not survive at R~ ( RT. Therefore an
analog of localization transition occurs at RT ——R~.

The technique in use exhibits many similarities with
the one developed to study nonequilibrium properties of
superconductors [10]. The ideology is to start with mi-

croscopic formulation of the problem in terms of exact
multicomponent Green functions and then subsequently
derive semiclassical equations for them. From semiclas-
sical equations one comes to an analog of the diffusion

equation.
As a first step we establish the relation between Green

functions and the transmission matrix amplitudes. We
consider first a disordered region with two perfect leads
attached. Transverse motion in the leads is quan-
tized giving rise to discrete modes, whereas the motion
along z is not quantized. The electron Green function

G„~ (e; z, z'), n, rn being transverse mode indexes, de-

scribes an evolution of a wave packet at Fermi energy
that starts at point z(z'). Let us take two cross sections
of the leads, one far to the left and another one to the
right. At the cross sections, the electron wave functions
are given by asymptotics of scattered waves, so we have
for transmission from left to right

t „=iv'v„v G „(z,z'),

where z, z' belong to the left and right cross sections,
respectively. The conjugated matrix is expressed through

We are ready to find expressions for Tr(ttt)". They
give the momenta of transmission distribution. We re-
place summation over the quantized modes by integra-
tion over the transverse coordinates writing the Green

function in the coordinate representation (x is a three-
dimensional coordinate),

[E + 'L6 &(p1) U(x)]G (xl1 x2) ~(x1 x2)1 (4)

U(x) being random impurity potential. For the lowest

order trace this yields

Tt(t t) = f d zld X2d X3d X4V1(xl 32)G (X2, X3)

xv2(xs x4)G~(x4, x1). (5)

Here v1~2l(x, x') stands for the operator of the current
through left (right) cross section. Equation (5) contains
a correlator of two current operators; thus it is equivalent
to the Kubo formula for conductivity. All traces of this
kind possess the same operator structure, which we write
symbolically as

T (ttt)" = T.(v, G"v,G")". (6)

It seems like (6) shall depend on a choice of cross sections,
but this is not true. This can be checked with (4) and
follows from the conservation law for the current. More-
over, this does not depend on the shape of a cross section
and whether it is in a lead or in a disordered region. In
this way, one can relax the requirement of perfect leads
(which is the weakest point of the Landauer formalism).

The transmission distribution will be evaluated from
the generating function, a Taylor expansion of which will

give the powers (6). The key idea of the method proposed
is to relate this generating function to a trace of a certain
multicomponent Green function in the field of a fictitious
potential (.

This potential will couple advanced and retarded func-

tions; therefore the resulting Green function must be a
two-by-two matrix labeled by indexes i„j = A, R. We

t

introduce such a Green function with the following equa-

tion (carets denote two-by-two matrices):

G(xt Xt) = G (31,xt) +f d ztd X4t (zt, xt) (ttvt(zt, X4)2 + ttV2(X3 X4)1 ]G(X4 Xt).

At the left cross section the potential (1 switches an advanced Green function to a retarded one whereas the potential

(2 switches it back at the right cross section. Here the following matrices have been used:

i'G" 0') . &01)
E0 G"~' &00)'

G+ + satisfying (4). It is easy to see that traces of the Taylor series of (7) in (1(2 will give traces of transmission
matrix powers. Therefore we will use the identity

3 3 A ttt
x1 d x2vl (xl 1 x2)Tr[& G(xl 2 x2)] —(32Tr t ~

= (32F((31(32)~1+(1 2t t)
The transmission distribution will be related to F(x) at complex x.

Equations (7) and (4) are suitable for any disordered system. To describe the diffusive conductor, one has to derive
semiclassical equations starting from (7) and (4), that is, to account for the fact that the size of the system exceeds
mean free path and the mean free path is much larger than the electron wavelength. This program has been carried
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P

=0, q.(x) =D(x)A-' (io)

The fictitious potential may be incorporated into bound-
ary conditions at left and right infinity:

where

A( —oo) = cr„A(oo) = SA( oo)S—

S((i, (2) = exp(i(i7 ) exp('L(2'r),

so that the solution of (10) explicitly does not depend
upon the choice of cross sections. The same is true for
the value of interest (9) which can be expressed in terms
of the total matrix current through an arbitrary cross
section of the conductor as follows:

(zF((i(2) = inv Tr(~ I)I—: j (x)N (x), {11)
S

N~ being the normal vector to the cross-section surface;
greek letters denote Cartesian indices. The result does
not depend on the cross section since the current con-
serves.

At arbitrary Q, gs, Eq. (10) is in general a complex
nonlinear matrix equation. Fortunately, the solution we
are searching for can be found easily. Let us parametrize
A as follows:

out a long time ago for another multicoraponent Green
function which describes the superconducting state. I
refer the reader to [10]and present here only a final result
of the derivation.

This is an efFective ddfusion equation for the averaged
Green function in coinciding points, G{x,x) —= ivrvA(x),
v being the density of states near the Fermi level per one
spin direction. The matrix A obeys the unitary condi-
tion A = 1. The difFusion equation can be written as a
conservation law for matrix current,

(0 1/B l I
( B0)2e'v'

This finally yields the main result of the present vrork:

q 1 —sin'(P/2) t t t )
The distribution of transmissions can be extracted from
F(P) in a complex plane of P. Using the identity 7r6(x) =
Im(x —i0) we show that

cosh4
p(cosh p, ) = . [F(2ip —vr) —F(2ip+ n)]. (16)27'

Substitution from (15) gives the result (2) and thus com-
firms its validity for an arbitrary difFusive conductor.
This is because the problem can be related to the solu-
tion of the equation determining the voltage distribution
in the conductor.

Let us see if we are able to do this if there are extended
defects setting interfaces in the conductor. To describe
this, the diffusion equation (10) shall be completed by
the condition at the interface. This condition should be
derived microscopically, this work being done in [111. We
rewrite this in a trMLsparent form:

j (x)N (x) = [Ai, Ag].

Here x belongs to the interface, N is a normal vector
at x, Ai, 2 are matrices at two sides of the interface, and
g(x) is nothing but a conductivity of the interface per
unit area.

In terms of 8 the condition reads

D(x) = sin(82 —8i)
88 8{x)
x~ 2ve~

( cos8 sin8/B )
q Bsin8 —cos8 ) ' (i(l —(i(2)

(»)
Under this parametrization, the diffusion equation (10)
becomes linear,

We choose gi = gs = sin(p/2). Boundary conditions then
take the simple form 8(—oo) = 0, 8{oo)= p. Ttus is pre-
cisely the equation one has to solve in order to find the
conductance of a conductor with distributed resistivity
oc D (x). Here 8(x) may be identified with the volt-
age distribution over a nonuniform conductor biased by
potential P. The density of the current is proportional
to D(x)V 8(x) and the total current through any cross
section is equal to the conductance,

FIG. 1. Normalized distribution of transmissions for a tun-
nel junction in series anth a dHFusive conductor. The parame-
ter GT /GN takes the following values starting from the lowest
curve: 0.1, 0.5, 1, 2, 10. The separating, ' curve correapom%eg
to G'~ = C~ and the limiting universal distribution are dravrn
as thick lines.
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displaying nonlinear terms. This is why the extended
defects make the solution for 8 different from the voltage
distribution giving rise to nonuniversal p(T).

A simple criterion can be drawn: The universality of
transmission distribution is broken whenever the sharp
voltage drops occur in the conductor; otherwise, it per-
sists.

To comprehend the situation further, let us concen-
trate on the case when 8q(z) —82(2:) appears to be con-
stant over the tunnel barrier interface that partitions off
the conductor. Thus we have a diffusive conductor, tun-
nel junction, and another diffusive conductor in series
and we shall match the total currents through all con-
ductors. These currents are related to drops of 8 at each

p(T) = fpp(T), T = cosh 8,

element by means of either (14) or (18):

I = Gw ),rt, 8g = GT sin(82 —8g) = G~ „sh, (P —82).

This is enough to express the current in terms of P and
find the function related to the distribution of transmis-
sions [12]:

7rhG~ X(p)
ez sing

'

X(P) + sin[X(P) —P] = 0. (19)
~N

Here G~ stands for the total conductance of two diffusive

parts. To extract the distribution, we make use of (16).
The answer comes in an implicit form which suffices to
plot the results (n = GT /G~),

1 ( nf i & nf
p, = — arccosh~ . [

—a
~ .

~

—Icos(n f) .
2 (+sin n j (nsin vr j

We normalize the actual distribution with a universal
value of po(T) given by (2). In Fig. 1, the normalized
distribution is plotted versus T. The distribution is al-

ways suppressed in comparison with the universal value.
For a more resistive barrier, the suppression is larger. If
GT ) G~, the distribution remains finite at T ~ 1, in-

dicating that a certain fraction of the channels has al-
most absolute transmission. This fraction declines to
zero at GT = GN. At G7 ) GN the maximal trans-
mission available cannot exceed a certain value T,„,
T~a„= I, G~ = GT, Tm.„=4GT, /GN «1, G7 «G„.
These features reveal an important new physics which
is absent if tunneling occurs between two clean metals.
In the latter case, transmissions through the barrier are
always limited by some maximal value.

The channels with transmissions close to unity have
been associated with delocalized states [5]. If the system
under consideration were uniform, their disappearance at
GJv = GT would have meant the true localization tran-
sition. Clearly something drastic happens at this point,
but one should be cautious drawing direct conclusions.
Indeed, neither resistance R = RT +R~ nor excess noise
power

W 3%

+classical 2 ~~
RT ~[

3 gRj1+2

exhibits critical behavior around the transition point for
the semiclassical approach used. Such behavior would
probably emerge from quantum localization corrections.
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