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Bicritical Point and Crossover in a Two- Temperature, Diffusive Kinetic Ising Model
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The phase diagram of a two-temperature kinetic Ising model which evolves by Kawasaki dynami( ~ ]~

studied using Monte Carlo simulations in dimension d =- 2 and solving a mean-spherical approximation
in general d. We show that the equal-temperature (equilibrium) Ising critical point is a bicritical Point
where two nonequilibrium critical lines meet a first-order line separating two distinct ordered phase~.
The shape of the nonequilibrium critical lines is described by a crossover exponent, p. which we tin(j

to be equal to the susceptibility exponent, y, of the Ising model.

PACS numbers: 05.50.+q, 05.70.Ln, 64.60.Cn

Phase transitions in nonequilibrium systems have been
much investigated in the last decade. The main thrust
of this research is to find some generic features of
nonequilibrium steady states by trying to answer the
following question: What happens to the universality
of critical phenomena when equilibrium systems are
dynamically perturbed so that phase transitions are forced
to occur in nonequilibrium steady states? The answer
does not appear to be simple. There are numerous
examples where the equilibrium critical behavior is not
affected by the perturbations [1,2]. There also exist
examples where the universality class changes under the
perturbation but the new class is a known equilibrium
class [3—5). Finally, in a few cases, new, nonequilibrium
(non-Hamiltonian) classes [6] emerge.

Since the emphasis in these studies is on general prop-
erties, not much attention has been paid to the details
of phase diagrams. Taking equilibrium theories as a
guide, however, we should note that phase diagrams may
also display universal features [7]. At a bicritical point,
e.g. , two critical lines meet a critical point at the end
of a first order line, and the shape of the critical lines
is universal, characterized by a crossover exponent p.
Whether this universality remains valid for a nonequi-
librium phase diagram near a bicritical point is an open
question and, below, this problem will be investigated by
studying a two-temperature, diffusive kinetic Ising model

[8]. We find that this system displays a relatively simple
bicritical phase structure since the bicritical point turns

out to be an Ising critical point. A further simplify-
ing feature is that the nonequilibrium phase transition
across one of the critical lines is expected to belong
to the universality class of uniaxial ferromagnets with
dipolar interactions [5]. Thus, provided universality ex-
tends to the nonequilibrium case, we have a prediction
for p since the Ising-to-uniaxial-dipole crossover is de-
scribed [9] by the susceptibility exponent of the Ising
model (tp = 7). We confirm this prediction first by
using Monte Carlo (MC) simulations to determine the

phase diagram in d = 2 and, second, by exactly solv-

ing the spherical limit of a coarse-grained version oi the
model.

The two-temperature, diffusive kinetic Ising model [8]
is a generalization of Kawasaki's model [10]. Ising spins
o-; =- ~1 at sites i of a d-dimensional hypercubic lat-

tice interact by nearest-neighbor ferromagnetic interac-
tions of strength J, and the dynamics consist of exchanges
of nearest-neighbor spins. Exchanges along one of the
axes of the lattice (called "parallel" direction) satisfy de-

tailed balance at an inverse temperature p11
= J/T~~ while

exchanges in the remaining d —
1 "perpendicular" direc-

tions are produced by a heat bath of inverse temperature
p. =- 1/T [11].

For p =
p~1

=- p (diagonal in Fig. 1), this is the
Kawasaki model [10] which relaxes to the equilibrium
Ising model at p and, consequently, it displays a con-
tinuous transition at p =

p11
= p, = 0.4407. Since the

dynamics conserves the total magnetization, the ordering
for p~ =

p11 ) p,. appears as a phase separation.
For p 4 p11, on the other hand, there is a flow of en-

ergy between the ]] and J. heat baths, and the system re-

laxes to a nonequilibrium steady state. This steady state
has previously been studied by MC simulations [8,12]
in d = 2, along the axes (p = 0, p~1) and (p&, p~1

= 0)
of the (p~, p11) plane. Critical points along these lines,

(p =- 0, p~1,.) and (p~, , p11
= 0), were found with phase

separation occurring in the ordered states. Because of the

dynamical anisotropy, however, these phase separation»
are distinct from those occurring in equilibrium: The
interfaces between the domains of up and down spins
align with normals along the directions of lower tem-

peratures, i.e., their normals point in the ]] direction for

(p = 0, p~1 & p~1, ) (we call this parallel order) while

they can point in any of the d — I J directions for (p,
p, , p11

= 0) (perpendicular order). Thus the symmetries
of the ]] and J orders are different from the symmetry ot

the equilibrium order where interfaces with normals along

any of the d axes of the lattice coexist (isotropic order-

ing). As a consequence, the universality classes of the ]]

and J orderings are distinct from the Ising class [8,12.13].
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FIG. l. Phase diagram in d = 2. Dimensionless inverse
temperatures are denoted by P = J/T~ and P~~

——J/T~~~.

The open circle marks the Ising critical point where two
nonequilibrium critical lines (solid curves) meet a first-order
line (dashed line). The critical lines are drawn as guides to
the eye reflecting the MC results (solid circles). Insets show
schematic drawings of domains of up and down spins in the
ordered state.

Furthermore, renormalization group calculations [13] in-

dicate that if there are critical lines connecting the Ising
critical point to the nonequilibrium critical points (P& =
0, P~~, ) and (P&„P~~= 0), then the critical behavior along
these lines falls into the universality class of the corre-
sponding ~~ or J orderings. In particular, the universality
class of the [~ ordering is expected to coincide with that of
a uniaxial ferromagnet with dipolar interactions [5].

In our MC simulations of the d = 2 system, we aimed
at showing that (i) the (P~ = 0, P~~, ) and (P&„P~~=
0) points are connected to the Ising critical point (P„P,)
by critical lines; (ii) the shape of the critical lines near

(P„P,) is described by the Ising-to-uniaxial-dipole
crossover exponent; and (iii) the coexistence line of the
equilibrium system (P~ =

P~~ & P,) is a first-order line.
In order to accomplish (i) and (ii), MC simulations were

performed at various values of P& with P~~ fixed at 0.0,
0.2, 0.3, 0.33, 0.37, or 0.4. Note that the phase diagram
in d = 2 is symmetric with respect to reflection through
the P~ =

P~~ diagonal since P& P~~ just corresponds to
renaming the axes of the lattice. Thus it is sufficient to
consider the P& ~

P~~ region. A difficulty in simulating
the system is that the anisotropy introduced by the
dynamics requires anisotropic finite size scaling, i.e., one
has to compare systems whose shapes scale as (L~, LI~+ )
where 8 is an anisotropy exponent [14]. Since both
renormalization group calculations [13] and simulations
[12] indicate that e = 0.9 —1.0, we chose system sizes of
8 X 4, 12 X 9, 16 &c 16, 24 X 36, and 32 X 64, which are
related by the naive scaling L& X L~~~. In anticipation of
the expected ordering, the order parameter %" was defined
as the following long-wavelength limit of the structure
factor
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FIG. 2. MC results for the location of the critical points
in coordinates (a, d) measured from the bicritical point as
shown in the inset. Error bars are not shown where they are
smaller than the symbol size. The solid line has a slope equal
to the susceptibility exponent of the equilibrium Ising model
(y = 1.75).

V = C(27r/Lg, 0),
where C(q~, q~~) is the Fourier transform of the spin
configuration with (q~~, q&) being the components of the
wave vector q in the ~~ and J directions, respectively. We
measured the time evolution of W and, after producing a
rough estimate of its relaxation time, determined the time
averages (W) and (W2) in the steady state. The location of
the critical point (P&„P~~)at fixed P~~ was first estimated
from the finite-size scaling of the cumulants of 4 [15],
and then a more accurate estimate was produced from

the scaling plots of L& (4) versus L& (P~ —P~, )/P&, .
The values of v = 0.6 and 8 = 0.9 —1.0 were taken from
[12], assuming that the universality class of the transition
is that of the nonequilibrium ordering at (P&„P~~=
0). Then the fitting parameter P&, was determined by
observing collapse of data. Conservative error bars on

P~, were obtained from noting unambiguous declines in
the quality of the scaling plots as P&, was changed. We
observed good collapse of data in a narrow range of P&,
and, we believe, this can be taken as an indication that

(a) the ordering occurs through critical phase transition,
and (b) the assumption about the universality class of this
transition is correct.

The details of the MC simulations will be published
elsewhere; here we summarize the results in Figs. 1 and
2. Figure 1 displays the phase diagram in the (P&, P~~)

plane with insets showing the alignment of surfaces in

the ordered states. The locations of transition points
parametrized as e = (2P, —P&, —

P~~,)/+2 and b, =
(P~, —

P~~,)/+2 are shown on the log-log plot in Fig. 2.
A straight line on this plot would imply 5 —a", and
thus the slope of the line would determine the crossover
exponent p. One can see that the MC points do not quite
lie on a straight line indicating that there are corrections
to scaling in the a range studied. Comparing with the

1321



VOLUME 73, NUMBER 10 PHYSICAL REVIEW LETTERS 5 Sv.PTEMBvR 1994

solid line which has a slope equal to the susceptibility
exponent (y = 1.75), however, one can also observe a
trend: The slope of the MC curve which is about 1.6 for
large e slowly increases, and it approaches 1.75 as e is
decreased. Thus, we believe that Fig. 2 strongly suggests
that asymptotically q = y = 1.75.

MC simulations were also used to study metastability
near the coexistence line (dotted line in Fig. 1). Square
samples (16 X 16 and 32 X 32) were brought to steady
state in the region of J order (p~ = p + 8, p~~

= p with

p ( p, and 8 = 0.01 —0.1), and then the inverse tem-
peratures were switched to the other side of the coexis-
tence line (p& = p, p~~

= p + 6). Measuring the time
evolution of the difference of the J and ~~ order parame-
ters, 6% = C(2'/L&, 0) —C(0, 2n/L~~), we could ob-
serve characteristic features of metastability: (a) After
switching the temperatures, 8%" did not change signifi-
cantly from its initial value 6+0 for times, 7, which were
2—3 orders of magnitude larger than the steady-state re-
laxation time r, . (b) The scatter in the values of r was
large. (c) Once the change of order started, Bqr changed
to —8%'0, in a time of order r, . (d) r diverged as the
coexistence line was approached. We believe the above
points provide evidence that the coexistence line is indeed
a line of first-order transitions.

In order to investigate problems (i) and (ii) from an
analytic point of view, we turn now to a coarse-grained
version of the two-temperature, diffusive Ising model.
In the classification scheme of critical dynamics [16],
it is a generalization of model B: The order parameter
is the density of particles and, to make the spherical
approximation used later more transparent, the order-
parameter field is assumed to have n components, S'(x, t)
(i = 1, ..., n) The I.sing case corresponds to n = 1, but
it will be clear from the results that the two-temperature
vector models (n ~ 2) may also be an interesting new
class of nonequilibrium models. The order parameter
evolves by diffusion which satisfies detailed balance at
temperature T~~ in one direction and at temperature T&

in the remaining d —1 dimensions. The Hamiltonian
in the detailed balance condition is the Landau-Ginzburg
free energy, so the equation of motion for the Fourier
transform of the field, S'(t), is given by the following
Langevin equation

S'(t) = L(((q)S' + rI)'((q, t) + X~(q)S' + rt~(q, t). (2)

Here the diffusion in the u =
)i and a = J directions are

described by the corresponding 5 terms:

L S' = —D q (ro +q)S'

+ u g SqiSq«Sq qi qII, (3)
=1

ql qtt

and the noise terms represent Gaussian-Markovian ran-
dom forces with correlations of the form

(rt' (q, t)rt (q', t')) = 2D q'8 6;,6(q + q')B(t —t').

The parameters D and u are constants with the rele-
vant temperature dependence contained in ro = T —To

where To is another constant. For ro = ro, we haveIi

model 8 with anisotropic diffusion, thus the steady state

is an equilibrium state at T~~
= T~ = T. For ro 4 ro",

on the other hand, there is a competition between the
diffusion dynamics in the [[ and i directions, each try-

ing to bring the system to equilibrium at temperatures T|I
and T&, respectively. The resulting nonequilibrium steady
state displays nonequilibrium phase transitions which will
be studied below using the spherical approximation where
one assumes that n ~ and u —1/n.

Before proceeding with the calculation, we note that
coarse graining should lead, in principle, to a Langevin
equation in which the constants u and To are different in

X~~ and L& and, furthermore, the D in 5 and in the cor-
responding noise correlations could also be distinct. By
neglecting all these differences, we introduce a minimal
model which displays all the symmetries, conservation
laws, anisotropies, and dynamical competitions present in
the microscopic process.

The spherical limit is a self-consistent approximation
for arbitrary n. It becomes exact for n ~ since the

fluctuations in ugSq(t)Sql(t) may be neglected in this
limit, and one can write

n

u $(S'(t)Sq (t)) = unC(q, t)8(q + q').
j=l

Here the brackets () denote averaging over both the
initial conditions and the noise g~~ and g&. Note that

the dynamic structure factor C(q, t) = (Sq(t)S'-q(t)) is
assumed to be independent of j, i.e., we restrict our
studies to the high-temperature phase and to the phase-
transition point.

Using (4), the equation of motion (2) becomes linear,
and its solution yields the following self-consistency
equations for the steady-state structure factor C(q) =
C(q, t ~):

2 + a 2

q~~(ro + q2 + S) + aq~(ro + q2 + S)

where a = D~/D~~ and

5=un dqcq .

The phase boundaries where the high-temperature phase
becomes unstable are found by locating the divergences of
the parallel and perpendicular susceptibilities [17] g~~—
C(q~~ ~ O, q~ = 0) and g~ —

C(q~~
= O, q~ ~ 0). Ac-

cordingly, two types of instabilities are obtained, and one
finds that two nonequilibrium critical lines meet at the

equilibrium critical point ro, = ro, = ro, .
Consider first the case of TI~ & T& with T+ being

decreased. Then g& diverges first, and the perpendicular
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phase boundary is obtained. Denoting the critical values
of rp by rp„the self-consistency conditions (5) and (6)
yield the equation defining the phase boundary:

qll + aq
rp, = —un dq i . (7)

q~~(rp,
—rp ) + q (qi + aqua)

We thank B. Schmittmann and R. K. P. Zia for useful
discussions. This work was partly supported by the
National Science Foundation through the Division of
Materials Research.

The crossover exponent is now found from the shape
of the phase boundary near the equilibrium critical point
where one writes

e = (re, + rp,
—2rp, )/&2, b„=(rII, —rp, )/v2,

(8)

and 5, —a~ gives the crossover exponent in the a 0
limit. Substituting (8) into (7) and using the known
equilibrium result rp, = un —f dqq z, we obtain

w 82/(d 2) 2

d -2' (9)

where W~ is proportional to un and otherwise depends on
d and a only. Since the susceptibility exponent of the
equilibrium spherical model is y = 2/(d —2), we find

q = y in agreement with the MC results. The case of
T& & Tll with Tll being decreased is treated along the
same line and the equation for the parallel phase boundary
again yields p = y.

As can be seen from (9), p diverges in d = 2. This is
a consequence of the fact that there is no phase transition
in the equilibrium system in d = 2, and thus rp, —~ as
d 2. It does not mean, however, that the nonequilibrium
transitions also disappear from the model. Indeed, Eq. (7)
yields finite ro, and ro, in d = 2. The lower critical
dimension di where the perpendicular phase boundary
disappears can be investigated by finding the dimension

where rp, diverges for fixed rp, (e.g., at rp, = 0). TheII II

divergence stems from the long-wavelength singularity of
the structure factor, and it occurs only at di = 1 where
the perpendicular direction disappears entirely. Similar
considerations about the disappearence of the parallel

phase boundary yields the lower critical dimension dI =
3/2 for the parallel phase transition.

Since there are nonequilibrium phase transitions in the

(d = 2, n = 1) case and we have found transitions in the

(d = 2, n ~) limit as well, we arrive at a rather interest-
ing conclusion. Namely, our results indicate the presence
of nonequilibrium phase transitions in two-temperature dif-
fusive models for d = 2 and arbitrary n. It is an intriguing
question: What is the nature of this transition in the XY
and Heisenberg models?
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