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Loop Algorithms for Monte Carlo Simulations of Quantum Spin Systems
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We present a new algorithm for world line Monte Carlo simulations of quantum spin systems. The
algorithm consists of a stochastic pairing and a stochastic flipping procedure, and the formula for
the pairing probability is explicitly given for Heisenberg models. As an illustration of the algorithm,
we calculated autocorrelation times for simulations of the S = 1 antiferromagnetic Heisenberg chain.
The rapid increase in autocorrelation times which is seen in the conventional world line method as the
imaginary-time spacing decreases is eliminated by the present algorithm.

PACS numbers: 75.10.Jm, 02.70.+d, 05.30.—d

Since the pioneering work of Heisenberg, quantum spin
models have provided useful descriptions of the mag-
netic properties of materials. For example, quantum spin
models have been attracting the interest of a number of
researches because in quasi-one-dimensional systems, a
novel property which strongly depends on the length of
the spin was conjectured by Haldane [1] and was con-
firmed numerically [2] for the S = 1 Heisenberg model.
In recent years, important information about the finite-
temperature properties of these models has been learned
using the world line quantum Monte Carlo simulation
[3]. For example, with this method, and numerical meth-
ods of analytic continuation [4], experimentally accessible
quantities, such as the dynamic structure factor, can be
obtained from the simulations [5]. This and related in-
formation are hard to obtain by other means. However,
as recently realized [6], the world line Monte Carlo tech-
nique has another difficulty —long autocorrelation times
making error estimation difficult and in some cases im-
possible. The long autocorrelation time is due either to
a physical phase transition, a zero-temperature singular-
ity, or a small value of the imaginary-time spacing in the
Suzuki- Trotter approximation.

Several attempts to reduce the autocorrelation times
in quantum Monte Carlo simulations have been made
by using new types of cluster algorithms [7,8]. The
attempts were most successful for the S =

2 XXZ model.
1

When transformed by the Suzuki-Trotter formula into a
problem with classical degrees of freedom, this model
maps onto a special case of the six-vertex model so
one can use the loop algorithm of Evertz and Marcu
[9]. With this algorithm, Wiese and Ying [8] reported
high precision results for the properties of the two-
dimensional, S =

2 antiferromagnetic Heisenberg model.
In this paper, we present a generalization of the loop
algorithm for spin systems with an arbitrary length of
spins in arbitrary dimensions. The generalization is not
a straightforward extension of the S = — case. In the

1
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S =
2 case, the existence of the loop algorithm followed

directly from the solution of a linear system of equations
of order 3. As we discuss below, for larger spins the

analogous system of equations has a much larger order
so even proving the existence of a meaningful solution
is nontrivial. We will not only show that a nontrivial
solution exists, but we will also present a compact
analytic expression for the solution of ferromagnetic and
antiferromagnetic Heisenberg models. We will illustrate
the efficiency of the algorithm for the specific case of the
S = 1 antiferromagnetic Heisenberg chain. The method
presented contains the loop algorithm for the S =

2 XXZ
model and the Swendsen-Wang (SW) cluster algorithm
[10] for classical Potts model as special cases.

The following analogy might be helpful for understand-
ing the new algorithm. In SW algorithm, two labels,
frozen and deleted, are assigned probabilistically to each
bond in the lattice depending on whether the pair of lattice
sites have the same Potts state or not. When the frozen
bonds are connected, clusters are formed, and each cluster
can be flipped independently. For the loop algorithm, a
plaquette plays a role analogous to a bond. Similarly,
circles seen below correspond to the lattice sites, and
various kinds of pairing will correspond to freezing and
deleting. When paired circles are connected, loops form.
These loops can be Hipped independently. Our Hamilton-
lan 1s

9f = gA;1= —QJ;J S;S" + S;SJ. + As,'S'
(l,J) (t,J)

where S; is the spin operator which satisfies

S,' = (S,")' + (S,')' + (S,')' = S(S + 1), and [S, , S, ] =
(i/2)S; with (n, P, y) = (x, y, z), (y, z, x), or (z, x, y).
The symbol (i,j ) represents an arbitrary nearest neighbor
pair. We assume J;, ~ 0. When A = 1, we have the
ferromagnetic Heisenberg model; when A = —1, the
antiferromagnetic Heisenberg model. In the case of anti-
ferromagnets, if the lattice is bipartite, we have no sign
problem. For simplicity, we will assume such lattices.

The first important step is to express a spin operator in
terms of sum of 2S Pauli operators, a; „(u= x, y, z):

25

s; = —g~;.„. (2)
p, =l
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Then, using the Suzuki-Trotter formula and (2), we can
express the partition function for our Hamiltonian as

(k+1) (k+1) (k) (k)
w; n;,n, n;, n- (3)J J

(nj k=1 (ij)EB&

Here, n; is a set of 2S one-bit variables, (n; i,
(k) (k)

(k) (k) (k)
n, 2, . . . , n, 2s), where n;„=0 or l. 8» is a subset of the
nearest neighbor pairs and depends on the decomposition
of the lattice we use. The product over k corresponds to
a step in imaginary time of length b, 7 where Ar = P/M.
We decompose the lattice by the usual checkerboard
scheme in the xv, yr, etc. planes for whatever number of
dimensions we wish to consider.

We work with complete sets of states that satisfy

(4)

The function w; j is simply the matrix element of
exp( —b ~&,) in this basis, i.e.,

I lw;, n, , n, , n;, n,
—= (n, , n I

X P;PJ exp( b, 731;,—)P,P; ~n;, nj).

The operator P; is a projector onto the space where

S; = S(S + 1). Thus, as characteristic of the world

line method, we have transformed the origina1 quantum

problem into a problem with classical degrees of freedom.
The classical problem has 8S-body interactions described

by (3). In what follows, we call a plaquette the group
of 8S variables on which the 8S-body interaction w; j is
defined.

To construct a cluster algorithm, we will folio~ the

general scheme proposed recently by several authors

[11,12]. We start with

P; J (b ~a) = v; 1 (b)/w; ~ (a),

QB(a, b)v;, (b) = w;, (a), (7)
b

where a is a state of a plaquette, i.e., a = (n,', n,', n;, n, ),
and b is a label, and P;, (b ~a) is the probability with which

the label b is assigned to a plaquette in the state a. This
probability is what we need to find. Because we know

w;, , to find it we need v; j which we determine from the

linear equations (7). The function B(a, b) has the value of
1 if the state a is allowed when the label is b and has the

value of 0 otherwise. Because in what follows we focus
on a given plaquette, we will omit the subscript i, j.

In general, the linear equations (7) are either over-
determined or underdetermined. The central claims of
the present paper are that at least one nontrivial solution
exists for isotropic models, i.e., for the ferromagnetic
and antiferromagnetic Heisenberg models, and that this

solution leads to an ergodic loop algorithm. We will

present the mathematical proof of the claim elsewhere.
In the present case, a state a can be depicted by

a plaquette with 2S circles at each corner [Fig. 1(a)].

(k+1) (k+ l) (k+1} (k+ &)
n-

(k) (k) (k)
Il; ) Il;2 n

(k)
11

FIG. 1. (a) A pictorial representation of a plaquette and its
state for S = 1. (b) One possible label (pairing) for the
plaquette.

Because of the conservation rule, the total number of
possible states for a is N„—= g» o(„)2. Each circle
represents one of 2S variables defined on a corner. In

(k)
Fig. 1, a solid circle means n; „=l, and an open circle,

(k)
n; „=0. In the loop algorithm, which is a special case
of a cluster algorithm, a label b is identified with a pairing
of the 8S circles as described below.

There are (4S)! possible ways to connect pairwise
the 8S circles on a given plaquette in such a way that

changing the color of two circles of any pair does not
violate the local conservation rule. Each connected pair
will be flipped simultaneously, in analogy to flipping pairs
of neighboring spins connected by the freezing-deletion
procedure in the SW algorithm. The label b in the present
case is one of several ways of pairing. An example is
shown in Fig. 1(b). The allowed states from this label
are those reachable by changing colors of some set of
pairs. Obviously, there are 2 possible states for any
label because a label consists of 4S pairs. In other words,
given a label b, the function B(a, b) takes the value of
1 if and only if a is one of these 24s states. Thus, the

meaning of (7) is clarified in the present specific case.
For later use, we need to define what we mean by the

class of a label: two labels belong to the same class if
and only if they are identical ways to connect four corners
if the distinction between circles at the same corner is

neglected. A class is identified with a diagram in which

each corner is the end point of 2S line segments (for an

example, see Fig. 2).
The solution we present in this Letter has the follow-

ing special properties: v(b) depends only on the class to

which b belongs, and v(b) is nonvanishing if and only if
the class of b can be decomposed into a combination of
two kinds of elemental diagrams. For the ferromagnetic
Heisenberg model, one of these elemental diagrams is a
pair of vertical lines, and the other is a pair of diagonal
lines [Fig. 2(a)]. For the antiferromagnetic Heisenberg

model, one is a pair of vertical lines, and the other is a
pair of horizontal lines [Fig. 2(b)]. Therefore, we have

2S + 1 distinct classes of labels in either case. Accord-

ingly, there are 2S + 1 independent variables in Eq. (7).
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FIG. 2. A label class which can be constructed from the
two elemental diagrams for the S =

2 (a) ferromagnetic and
(b) antiferromagnetic Heisenberg chain.

We will let (2S —1, 1) denote the class which is character-
ized by the combination of 2S —l elemental diagrams of
the first kind and l diagrams of the second kind. Accord-
ingly, we define v(2S —1, 1) as the value of v(b) when b
belongs to the class (2S —1, 1).

To see that only one solution exists having the proper-
ties just mentioned, it is sufficient to note the following: If
we first define classes of states similar to the classes of la-
bels, then we say that two states belong to the same class
if and only if they are identical if we neglect the distinc-
tion of circles at the same corner. Consequently, a state
(nt, n2, n3, n4) belongs to the class which is characterized
by four numbers (m&, m2, m3, m4) where m; —= g„,n;„.2S

For the ferromagnetic case, if we pick from the N, t equa-
tions (7) an equation for which a belongs to a class char-
acterized by (1,2S —1, 0, 2S) (1 = 0, 1, . . . , 2S), then it is
easy to see that this equation is [(2S)!]2v(2S —1, 1) =
w(1, 2S —1,0, 2S), where w(m&t, tm2, ms, m4) equals w(a)
with a belonging to the class (mt tm2, ms, m4). Thus, we
arrive at the solution for the ferromagnetic Heisenberg
model,

v(2S —1, 1) = (2Si '

2S! &1)
X ((1,2S —li exp( —b rifi, j)10 2S)).

(8)
For antiferromagnetic case, the equation for the class of
states characterized by (1,0, 0, 1) is

v(2S —1, 1)=, ~ ~ ((1,0i exp( —Ere;,J)i0, 1)).
1 (2Si

2S! 1 j
(9)

The state im;, m, )) stands for the eigenfunction of S;,
Sj~, S,', and S,' with S; = SJ~ = S(S + 1), S,' = m;, and
SJ = m, The formulas (8) and (9) completely determine
our loop algorithm.

We remark that a loop algorithm is advantageous
from the computational point of view because the loop
identification takes a computational time proportional to
the number of variables N„,whereas cluster identification
takes at least N„log(N„). As pointed out in [12], the
S =

2 XXZ model with Ising-like anisotropy does not
have loop algorithm solution of (7); that is, no solution
to (7) exists if the label is restricted to the pairing.
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FIG. 3. The integrated autocorrelation time versus inverse
imaginary-time spacing for the staggered magnetization (m„)
and the staggered susceptibility (g„)for an antiferromagnetic
Heisenberg chain with S = 1 and length L = 32 at T = 0.1.
The lines are guidelines to eye.

However, we have a cluster solution in that case if we
introduce another type of label [12]. In the limit of strong
anisotropy, this solution reduces to the SW algorithm for
the Ising models [12]. In general, the computation time
for one Monte Carlo step of the loop algorithm is only a
small multiple of the standard method.

To illustrate the efficiency of the present algorithm,
we simulated the S = 1 Heisenberg chain. We just
want to show how drastically autocorrelation times are
reduced. Others [13] have already intensively studied
various important properties such as the magnitude of
the gap and the correlation length at zero temperature.
Figure 3 shows the integrated autocorrelation time for
the magnetization and the magnetic susceptibility for a
chain of length 32 at the inverse temperature P = 10.
To calculate the autocorrelation time, we have divided
sequences of up to 3 X 10 Monte Carlo data points
for a quantity X into bins of length 1. If Xb(l) is the
average of the data in the bth bin, then the integrated
autocorrelation is estimated by the asymptotic value of
rx(1) —= 1ox(l)/2ox(1), at large 1 [14]. Here, ox(1) is the
variance of the bin averages Xb(1).

Because antiferromagnetic Heisenberg models with
integer spins are believed to be disordered and have a
finite correlation length (g = 6.2 in the case of S = 1)
[13], we expect that our measured autocorrelation time
for either the conventional or the new algorithm does
not depend strongly on the system size if the system
is sufficiently long. We also expect that with fixed
imaginary-time spacing this autocorrelation time is also
independent of the inverse temperature if the temperature
is sufficiently low because once we map the original
problem onto the classical system, the imaginary-time
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spacing is the only relevant coupling constant and the
inverse temperature only plays the role of the system
size in the imaginary-time direction. We actually observe
both of these features by doing the simulations for shorter
chains (L = 16) and at higher temperatures.

In the case of integer spins, the long autocorrelation
times arise only from small imaginary-time spacings.
Because the ordinary checkerboard decomposition has a
systematic error proportional to (Ar) 2, we must take
small spacings to get accurate results (and to maintain
the quantum character of the results). However, as
this spacing decreases, the acceptance ratio of a local
movement of a world line in the conventional method
becomes small because each diagonal segment of a world
line contributes to the total weight w by the factor
proportional to 57. To improve the accuracy of the
results in the conventional method, we thus have to expect
longer autocorrelation times as well as the expense of the
larger system sizes in the imaginary-time direction.

We calculated the autocorrelation times 7-x for X =
energy, staggered magnetization, and staggered suscepti-
bility. Although the correlation time of the energy for the
conventional algorithm is longer than that for the loop al-

gorithm, the difference is not as significant as for the other
two quantities. As we can see in Fig. 3, the autocorrela-
tion time for the magnetization is enormously long for
the conventional world line method. On the other hand,
for the present algorithm it is identically 2 because in the

loop algorithm any loop is Aipped with probability 2 and
therefore two subsequent configurations are completely
decorrelated as far as the magnetization is concerned. As
for the susceptibility, although the difference is slightly
less significant than that for the magnetization, we see
the same qualitative property: a rapid increase in 7.& as
the imaginary-time spacing decreases for the conventional
algorithm, whereas for the loop algorithm it does not de-

pend on the spacing. We conclude that the present algo-
rithm is particularly useful for the integer spins. For half
integer spins, we expect that the efficiency of the present
algorithm is even more crucial because the autocorrela-
tion time for the conventional algorithm will increase as a
function of the inverse temperature and the system size as
well as the function of the inverse of the imaginary-time

spacing whereas the performance of the new algorithms is
quite insensitive to changes in these parameters [6].

Finally, we remark that we have found some simple
analytic solutions for anisotropic models. Of course, the

previous work where the S =
z anisotropic XXZ models

is mapped to the six-vertex model is the simplest example
of an anisotropic model. Specifically, we actually found
solutions for anisotropic models with larger spins, such
as the S = 1 XF model. These results will be presented
elsewhere. Further study of constructing general formula
of the anisotropic XXZ models and applying the present
algorithm to half integer spin cases is under way.
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