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Two Hubbard Bands: Weight Transfer in Optical and One-Particle Spectra
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We identify local kinetic-energy contributions which are responsible for the rapid weight transfer
from the high- to the low-energy scale observed upon doping in strongly correlated materials. Using
strong-coupling perturbation theory for the Hubbard model we derive expressions for the weights of the
upper and lower Hubbard bands separately and evaluate them explicitly in one dimension. The optical
conductivity is found to be a direct probe of the local spin order.
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The high-energy excitation spectra of the Mott-Hubbard
(charge-transfer) insulators show a dramatic dependence
upon doping. Perhaps the best known examples are the
cuprate materials, where the weight around 2—3 eV in the
optical conductivity disappears very rapidly [1,2] as soon
as holes or electrons are doped to an insulating La2cu04,
and reappears in the low-infrared and midinfrared region,
with a roughly constant total sum rule. In contrast to
these observations, in a conventional semiconductor only
a minor reduction of the intensity would occur due to the
reduced number of interband transitions.

A similar phenomenon is found in x-ray absorption
and electron energy-loss experiments on the oxygen 1s
edge. There an electron is promoted to the empty 0 2p
states, and therefore this experiment is closely related to
the one-particle electron addition spectrum. As holes are
introduced in the insulator one observes a valence-band
prepeak as expected. However, at the same time the upper
band quickly loses its weight [3—5]. Similar effects are
observed in Li-doped Ni0 [6], suggesting that this is a
general feature of doped Mott insulators.

It is well known that the strongly correlated multiband
models describing the charge-transfer insulators can be
mapped on an effective single-band Hubbard model which
reproduces the relevant states near the Fermi energy
[7]. Numerous numerical diagonalization studies have
shown that it indeed describes qualitatively or even
quantitatively the features observed in both experiments
[4,5,8]. Therefore, the complete theoretical understanding
of these rapid changes of spectral weight in the Hubbard
model is of fundamental importance.

In this Letter we derive sum rules for the lower (LHB)
and upper (UHB) Hubbard bands separately We explain.
the physical origin of the observed weight changes and
show that the fast disappearance of the UHB has a
different interpretation for the optical and for the one-
particle spectrum. Our results explain why the t-J model
does not represent the spectral properties of the large-U
Hubbard model, except precisely at half filling.

We start from the Hubbard Hamiltonian with t (( U,

H = V + T = Ugn;tn;1 —t a;oai+so, (1)t

where ni = a; a;, i = 1, ..., N, is the site index, cr

the spin, and 6 labels the nearest neighbors of site
i. Sum rules are derived by identifying the Hubbard
bands to which each particular eigenstate of H belongs.
This can be achieved by a canonical transformation
to new fermions, c; = e a; e, which satisfies the
requirement that the number of doubly occupied sites (in
c; ) is conserved [9]. This transformation is well known
and its first-order term (in t/U) transforms the Hubbard
Hamiltonian into what we will call the strong-coupling
Hamiltonian (t-J model plus three-site hopping).

Following Harris and Lange [9] the creation operator
is decomposed into a part which conserves the number of
doubly occupied sites, and a part which increases it by
one, c; =c; .p+ c; .U, where

t t g - y t t
ci,o",o = ci,a (1 nio) , cio u= ci, o",nio, (2),

and n; — = c; —c; —. This can be used to decompose any
operator. For instance, the kinetic energy of the new
fermions becomes T = Tp + TU + T U, with

To ———t g[(1 —n; )c; c;„-(1—n;, s )-
+n; c; c;+s n;, s --],

t
TU t Z ni, o ci,o ci+B,o 'Ll ni+B,cr) i

and T U
= TU. The transformation 5 can be expressed by

commutators of the terms in T [9,10]. To second order,
S = (Tu T v)/U + [Tu + T-v. To]/U . -

The above transformation enables us to derive sum-
rule expressions for the optical conductivity for the UHB
and LHB separately. Consider an electric field in the
x direction, and R;„ is the x component of the posi-
tion vector of atom i. The corresponding paramagnetic
current [11,12] is the time derivative of the polarization
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P„= Z.; R;,n, , j„=i[H P ] = it g ~ B„a;+~ a;t

Using linear response the real part of the optical conduc-
tivity per site for the UHB is

UHB( )

TABLE I. Contributions of the different three-site hopping
terms to the total conductivity and the optical intensity of the
two Hubbard bands. 6 and 6' point to the nearest neighbors of
a common site i.

Hopping term Total LHB UHB

l(f, Nlj. 10, N&l'~(~ —Ff + &0), (4)
a fE UHB

where l0, N) denotes the N-particle ground state and
lf, N)

is the set of final states belonging to the UHB. We can
assure that only UHB states are reached by restricting j,
to j,.U, which creates one doubly occupied site. Then the
summation can be extended to the complete set of final
states lf, N). Replacing one of the j,'s [13] by i [0,P, j,
integrating over ~, transforming to c; fermions, and

using (2) one finds the sum rule for the UHB to order
r'/U [14],

W = (j,, UPU —P„Uj„U)UHB

a

2t = = l
2 S; . S;; ——ii;ii; ~;)UN, , 4

+ ~ Ci —x,o-nisr Ci+x, cr Ci —x u Cio- Cia Ci+x, o

(5)

Here x is the unit vector in the x direction and ( ) denotes
the expectation value in the ground state of the strong-

coupling Hamiltonian.
The total sum rule W is proportional to the kinetic

energy [11—13]. Transforming to c; fermions we find

w = — (T) = — (T) +1 l - 2t2

zN, zN, zUN,

X Z Ci+p unio. Ci+p', o. Ci+p uciucicrCi+p', o.

(6)

with z being the number of nearest neighbors. The sum

rule for the LHB to order t2/U is simply the difference of
the above expressions [15].

The different bands are related to different parts (for-
ward, backward, and sideward) of the three-site hopping
term of order t2/U in the kinetic energy [16], as shown

in Table I. The sum rule for the LHB does not contain
the exchange part, and therefore its weight vanishes at
half filling. It is easy to understand why the sum rule

of the UHB (5) contains the spin-spin correlation func-

tion. The current transfers an electron to a neighboring
site. In order to reach the UHB (i.e., create a doubly
occupied site) first of all there has to be an electron
present, and second the electrons have to form a sin-

glet. Both conditions are included in the spin-spin cor-
relation function. This also explains why the UHB loses
its weight so rapidly upon doping. If one introduces a
hole in the half-filled spin system, two spin-spin bonds
are removed in the x direction, reducing W"" (x) to

(1 —2x)W"Ha(0), where x = 1 —n is the doping per-

6 = 6' or (S, 5;+s —n;n, ;/4)
6 1 6'

t5' = —6'
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FIG. 1. The integrated conductivities: total, for the upper
(UHB) and lower (LHB) Hubbard bands versus occupation n

in 1D. The lines are the perturbation theory results (7) and the
dots are numerical results for a 10-site ring.

centage. Apart from this static weight transfer, the dy-
namics due to three-site hopping to neighbors at a distance
2 reduces W""a(x) down to (1 —3x)W""a(0) in one di-
mension (1D) (see Table I and below). In more than 1D
the holes weaken the spin order and this reduces the UHB
even more.

In 1D one may evaluate W""a (5) and W (6) analyti-

cally using the Bethe-ansatz wave function which for
large U reduces [17] to a product of a spinless fermion
and a Heisenberg model spin wave function,

2 (W-' =.(I 2)—' l

Uk 2m

sin(n n) t2
2 sin(2n. n) )lW'

U 2~
The spectral weights for the infinite chain are plotted
in Fig. 1 for U/t = 10 and compared with numerical
data for a ring of 10 sites. If U is decreased, the

weight around half filling (n = 1) increases relative to
the quarter-filled case, and the total weight for U of the

order of the bandwidth becomes almost independent of the
density n close to half filling. These qualitative features
are described well by Eq. (7), but quantitative deviations
from the numerical data become larger due to the neglect
of higher-order terms. These higher-order terms even
enhance the weight transfer from the UHB to the LHB.
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FIG. 2. Spectral weight of the upper Hubbard band in units of
J = 4t~/U as a function of the applied magnetic field g~H/J
for different fillings n in 1D.

The zero-frequency Drude weight D in 1D can be
expressed in terms of the charge velocity and the second
derivative of the ground-state energy with respect to
the density [18]. Using published large-U Bethe-ansatz
expressions for the velocity [19] and energy [17],
and comparing with Eq. (7) we find W""B"D =
D + 6(t3/U2) S. o up to second order [20] all the

weight in the LHB goes into the Drude peak. This is
a direct consequence of the spin-charge decoupling for
large U, in contrast to the two-dimensional case where

the motion of the holes disrupts the spin system resulting
in a large finite-frequency optical response in the LHB.
The spin-charge decoupling in 1D involves alI states in

the LHB, but hardly affects the states in the UHB. As

long as the spin correlations are antiferromagnetic one
can always make excitations to the UHB, independent of
dimension.

As shown by Eq. (5), the weight of the UHB in op-
tical conductivity effectively measures S; S;+s. There-
fore, the doping dependence of this intensity contains
information about the influence of the holes on the local
spin order. If, for instance, the holes form ferromagnetic
polarons this will lead to an extremely rapid disappear-
ance of the UHB with increasing x, depending on the
size of the polarons. Using the ground-state energy of
the 1D Heisenberg model as a function of the magneti-
zation [21], we calculated the weight of the UHB as a
function of the magnetic field (Fig. 2). The surprising re-
sult is that a small magnetic field —J causes a complete
disappearance of the conductivity at a frequency —U, a
few eV. Experimentally the above effect should be mea-
surable by optical spectroscopy for substances with ex-
change couplings J = 4tz/U = 10 K. Unfortunately, the
intensity of the upper band will be small when 1 is small

[see Eq. (5)].
The local (site independent) one-particle spectrum is

the sum of electron removal and addition,

A(ra) =g (f, N + 1 c; O, N) E ra —Ef
+' + EcN

f,cr

P f (8)

The total sum rule or zeroth moment is m

g ([a;,a; )) = 2. To second order in t/U this is
the sum of the weights of the UHB and LHB. As before,
if one restricts a; to the part which does not create

a doubly occupied site for the c; fermions, then only
states in the LHB are reached. The zeroth moment of the
LHB is therefore mo = p ((a; .Q, a; .Q)). In analogy

(o)

with the calculation of the sum rules for the optical
conductivity one finds for the electron addition or inverse
photoemission (IPES) part of the LHB (x = 1 —n),

(p), IpES
mp

' (p) t 1
mo —n =2x+2— (c; c;+s )

U N, , ~
&t12

+
I

—
~ g (

—Sc,'„c;,c
4 U) Ng, . g p .glypt

+ 6 Ci+g o.ni,D Ci+8', cr Ci+6 o Ci,crCi, crci+$', cr

The first-order term [22] was derived before by Harris
and Lange [9]. Again the expectation values have to be
calculated using the strong-coupling model.

The factor 2x can be readily understood by state
counting: At U = 00 one recovers two low-energy states
for every electron removed [5,9]. Equation (9) shows that

both the first- and second-order terms (ii + 8') are kinetic
and increase the weight of the LHB for small x. This
enhancement can be understood as a positive interference
between the ground state and low-energy final states.

In 1D the Ogata-Shiba wave function [17]gives

(Q), lpa$, 113 4t . . . / t & sin(2 trx)
mQ

' ' = 2x + sin(m. x) + 6~—
mU EUj 2n'

sin (2m x) sin 2(m.x)+
2m.

(I )
The first-order term is just the kinetic energy of spinless
fermions and leaves the spins unchanged, while the
second-order term involves the spin orientations as well.
In Fig. 3 we plot the first- and second-order terms in

Eq. (10) and compare them with numerical results for a
10-site ring [5]. The first-order term is symmetric around
n = 0.5. The second-order term enhances the weight
transfer for small doping. For U = 5, which is of the
order of the bandwidth, the perturbation results deviate
from the numerical data due to higher-order corrections.

To conclude, using large-U perturbation theory we
derived sum rules for the individual Hubbard bands in
the optical and one-particle spectra. To obtain a correct
description it was essential to transform the operators,
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FIG. 3. Electron-addition intensity in the lower Hubbard band
as a function of n in 1D. The static part (= 2x) is subtracted.
The lines and the dots stand for the second-order (10) and
numerical results for a 10-site ring, respectively. The dashed
line shows the first-order result at U = St.

such as the current operator for the optical conductivity.
The first-order corrections give rise to large intensity
changes in general and reasonably reproduce the observed
features, even for intermediate values of U. Although we
derived explicit expressions only in 1D, we would like to
emphasize that due to the local nature of the sum rules the
distribution of weight over the two bands is qualitatively
very similar also for higher dimensions [14].

Especially for the optical spectrum the lowest order cor-
rections result directly from the three-site hopping terms
8 4 8' in the strong-coupling Hatniltonian [15]. There-
fore, the simpler t Jmodel doe-s not describe accurately
the spectral properties of the Hubbard model.

The fast disappearance of the UHB with doping
shown in both experiments on doped Lazcu04 [1—4]
are in qualitative or even quantitative agreement with
a two-dimensional Hubbard model for intermediate U.
However, the physical interpretation is different. The
reduction of the UHB in the optical spectrum has three
reasons: (i) a hole breaks two spin bonds in the direction
of the electric field, (ii) the spin order is weakened, and

(iii) a dynamical weight transfer due to initial-final state
interference occurs. In the one-particle spectrum the
UHB weight is reduced since there are simply less sites
that, after adding a particle, become doubly occupied.
The effect is, however, again largely enhanced by the
interference effects. As a result, the low-energy peaks
are larger than might be expected from the actual level of
dopIQg.
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