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Dynamics of a Ring Polymer in a Gel
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We present a simple scaling theory of the dynamics of a ring polymer in a gel. In the absence of
excluded volume interactions, we predict that the translational diffusion coefficient D varies with the
molecular weight M as D —M ' and the longest relaxation time T scales as T —M'/ . The results of
numerical simulations support these findings.

PACS numbers: 82.70.Gg, 61.41.+e

The motion of polymer molecules in a gel has proved
to be a problem of enduring interest. While the be-
havior of both linear [1—3] and branched [3,4] species
has been rather thoroughly examined, there have been
relatively few theoretical treatments of the dynamics of
ring polymers [5—7]. Yet the problem is an important
one. DNA often occurs naturally in a circular form and
such molecules are frequently characterized by the tech-
nique of gel electrophoresis. An understanding of the
electrophoretic mobility of circular DNA requires, as a
starting point, a theoretical description of the diffusive
motion of the molecules in thermal equilibrium. In this
Letter we demonstrate that previous conjectures on the dy-
namics of cyclic polymers overlooked important modes of
motion available to the molecule and consequently under-
estimated the rate of evolution of polymer configurations.
The longest relaxation time T of a ring polymer in a gel
scales with its molecular weight M as T —M /, and not
as T —Ms as formerly supposed [5—7].

We restrict our discussion to a tnodel gel, represented
by a cage that divides space into a connected network
of open regions (pores), each of linear dimension a.
Furthermore, we suppose that the gel contains no dangling
ends that could skewer a circular molecule. We confine
our attention to ring polymers that are neither knotted
nor supercoiled (e.g., nicked circular DNA) and that are
introduced into the gel subsequent to their manufacture
so that they are not concatenated with the network. A
polymer has contour length L, Kuhn length b, and a
fluid friction g associated with each Kuhn segment. It
is assumed that b ( a so that the polymer is flexible on
the scale of the gel pores. To begin, we shall neglect
the excluded volume interaction of the molecule with
itself. Then the polymer may be modeled by a chain
of N = Lb/a2 segments, each of linear dimension a
and representing a blob comprised of N, = (a/b)2 Kuhn
segments. The Rouse relaxation time of each blob is
ro —a4$/b kT. In this Letter, we are concerned only
with the case of long chains, N ~~ 1.

Since the polymer cannot encompass any material part
of the gel, it must double up on itself and adopt a

conformation similar to that shown in Fig. 1(a). Such a
configuration is equivalent [5—8] to one of the ensemble
of lattice trees [Fig. 1(b)]. The statistics of ring polymers
in a gel at thermal equilibrium, then, are the same as
those of (ideal) randomly branched polymers or "lattice
animals. " Consequently the radius of gyration R scales
[9] as R —N'/ a.

de Gennes [1]pictured the reptation of a linear polymer
in a gel as the consequence of the diffusion of numerous
"length defects" or kinks along the polymer contour.
Three groups of authors [5—7] independently proposed
that this idea could be adapted to ring molecules. They
envisaged the migration of kinks around the perimeter of
the conformation, as shown in Fig. 1(a), and supposed
that the kinks diffuse just as they do on a linear chain.
By considering the time required for a kink to diffuse
halfway around the perimeter, and noting that in this
period the kink moves a spatial distance R, they concluded
that the relaxation time of the polymer scales as T —N3

and its translational diffusion coefficient as D —N 5/2 (in
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FIG. l. (a) Representation of a ring polymer in a gel (the
polymer is shown as self-avoiding and in two dimensions for
the sake of clarity). (b) Equivalent lattice-tree conformation
with the "trunk" between points P and Q marked in bold. (c)
The "branches" of the lattice tree on the section PQ act as
reservoirs of kinks, represented here by loops of differing size.
Kinks diffuse from one reservoir to the next along the trunk, as
indicated by the arrows.
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three dimensions, with no excluded volume). The validity
of this argument is doubtful, however, for it fails to take
into account the evolution of the shape of the perimeter as
one kink moves around it (the shape change, of course, is
due to the motion of other kinks). Indeed, the variability
of the perimeter provides a mechanism whereby the local
density of kinks can be altered and, as we shall see,
this affects the kink diffusion so that it differs from that
on a linear chain. Since the conformation is perpetually
changing, we propose that a more reliable approach to
determining the long-time diffusion of the molecule is
to focus attention on the most durable feature of the

polymer configuration. If one considers the lattice-tree
representation [Fig. 1(b)], it is clear that kink diffusion
will first rearrange the leaves, then the branches, and
finally the trunk. The crux of our approach, then, is to
investigate the dynamical evolution of the tree trunk.

Consider a general section of the polymer such as
the part between points P and Q (moving clockwise
around the ring) in Fig. 1(a). The portion of the lattice
tree corresponding to this section may unambiguously be
divided into a trunk and branches [Fig. 1(b)], with each
branch representing a closed loop of the molecule. The
trunk corresponds to the "backbone" of a lattice animal
and its statistics are well known. It has the conformation
of a random walk of length m —n'j' segments, where n

is the number of chain segments in the section PQ. Now
consider kink diffusion on this portion of the molecule.
Again, a division into two components can be made: (i)
migration of kinks within the branches; and (ii) diffusion
of kinks along the trunk. We argue that the first process
just rearranges the conformation of a closed loop and
does not contribute significantly to overall transport of
the section PQ. Each loop, however, acts as a reservoir
of kinks which participate in the second process; the

transport of kinks along the trunk can be thought of as
the transfer of kinks between adjacent loops [Fig. 1(c)].
Consider a time interval ~0, which is the typical time
for a kink to move through one pore, i.e., through a
mean-square displacement along the trunk As = a . The
motion of a single kink causes the center of mass of PQ
to move through b, s2 = a2/n2 along the trunk. Since
there are of order m loops, and the direction in which
each of them transfers a kink is random, the overall
mean-square displacement of the center of mass along the
trunk is b, s, —ma /n2. Thus the curvilinear diffusion
coefficient of the section PQ, measured along the trunk,
is D, (n) = As~ /7O —Don 2, where Do = a2 /7O is the
diffusion coefficient of kinks around the ring. The self-
similar nature of the polymer conformation ensures that
this result holds on all length scales.

Considering now the entire ring (or, more precisely,
one undoubled half of it), its trunk contains M —N'~

segments and has length 5 = Ma. The longest relaxation
time T of the polymer corresponds to the modification
of all segments of the trunk and is therefore given by

T —S /D, (N). Thus

In this time, the polymer moves through a spatial distance
of order its radius of gyration so that its translational
diffusion coefficient is given by D —R2/T and scales as

D —N D() ~ (2)

Coincidentally, the diffusion coefficient of a ring polymer
scales with length in the same way as that of a reptating
linear chain [1]. The relaxation behavior is very different,
however. As a linear chain reptates out of its tube,
only the segments close to its ends relax rapidly, the

majority of segments relaxing on the time scale of the
longest relaxation time. For a ring polymer, on the other
hand, a substantial proportion of the segments (those
corresponding to the leaves of the tree) relax almost
immediately and only a small fraction of the molecule
remains to be relaxed on the time scale of the longest
relaxation time. Furthermore, this time is shorter than that
of the equivalent linear chain [1].

The above arguments rationalize results that we have
obtained from numerical simulations using a variant of the

repton model [10,11]. The gel is represented by a regular
cubic grid of impenetrable lines and the polymer modeled
as a chain of N, segments forming a closed ring on the
dual lattice (Fig. 2). Each segment may be in one of two
states: either extended, connecting two adjacent lattice
points, or looped on a single lattice point, in which case
it represents a length defect. The dynamics is specified

by three "exchange rules" which are, in effect, rules for
defect motion. Rule 1: A loop and an extended segment
adjacent to it may exchange identities, the extended
segment becoming a loop and vice versa (the effect of
this move is that the loop hops one unit along the chain).
Rule 2: A pair of loops that are adjacent on the chain

may extend together towards a new lattice point, chosen at
random from amongst the nearest neighbors. Rule 3: The
reverse of rule 2, a pair of adjacent extended segments that

connect the same two lattice points may contract to form
two loops. For simplicity, the rates of each of these three

FIG. 2. Model for the numerical simulation of the polymer
dynamics [represented here is the upper right portion of the
molecule in Fig. 1(a)]. The numbered hopping moves indicated

by the arrows correspond to the three rules stated in the text.
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FIG. 3. Diffusion coefficient D as a function of the number
of chain segments N . The solid line is the theoretical scaling
Eq. (1).

transitions are set equal. This model is essentially similar
to the cage model of Evans and Edwards [5,12], but is
more efficient to simulate, permitting a full investigation
of the length dependence of the polymer dynamics.

We have examined the equilibrium statistics of the
polymers generated using these dynamical rules. We
find that the radius of gyration scales as R —N," with
v = 0.28 ~ 0.02 for N, ) 100 (not shown). There is
apparently only a very slow approach to asymptotic
behavior, for the exponent is significantly larger at smaller
N, . The diffusion coefficient of the center of mass was
measured over a period in which the polymer moved
through a displacement at least 1 order of magnitude
greater than its radius of gyration (Fig. 3). It scales with
the polymer length as D —N, 2'-0', in agreement with

Eq. (2). The relaxation behavior was investigated by
determining the fraction f of original lattice-tree bonds
that still remain after time t has elapsed. A substantial
fraction of bonds relax very quickly, but at long times
there is a single exponential decay f = fo exp( —t/T) (see
Fig. 4). The measured time constant, which corresponds
to the longest relaxation time of the polymer, scales
as T —N26-0', consistent with Eq. (1). Furthermore,
extrapolation of the exponential part of the curve back to
the axis yields an intercept fo that scales as fo —N05 0', -
supporting the association of the long-time decay with
the relaxation of the tree trunk of length M —N05 We.
have also investigated the curvilinear transport of a tagged
segment along the chain at early times. Consider the
point P on the polymer in Fig. 1(a), which corresponds
to an interior part of the tree in Fig. 1(b). After time
t && T has elapsed, the polymer will still pass through
the pore that originally housed P, but the point P itself
will have diffused away. Let I be the distance (measured
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FIG. 4. Longest relaxation time T as a function of the number
of chain segments N, . The solid line is the theoretical scaling
Eq. (2). Inset: Fraction f of original bonds remaining after
time t, for polymers of different length N, (labeled).

along the chain) between P and its initial location. We
find that (12) —t~ with y = 0.80 + 0.04. The value of
this exponent lies between the values obtained for tracer
diffusion on a linear chain [1], y = 2, and for free
diffusion of noninteracting particles, y = 1. It follows
from Eq. (1), valid on all length scales due to the self-
similarity of the polymer conformation. Inversion of (1)
implies that the typical contour length through which the
chain has diffused at time t is I —t ~ so that the mean-
square length of chain that has passed through a pore
scales with time as (I2) —t4~5.

The weak-field electrophoretic mobility p, of a ring
polymer in a gel is related to its equilibrium diffusion
coefficient by the Nernst-Einstein relation. Since the
electrostatic driving force, proportional to the total charge,
varies linearly with the degree of polymerization, Eq. (1)
implies than p, —N . The inverse-linear dependence is
coincidentally the same as the law that has been observed
[13] for linear polymers and rationalized in terms of
the reptation model [14]. There is some circumstantial
evidence that the gel-electrophoretic mobility of circular
DNA [15,16] does obey this scaling in weak electric
fields, but more extensive experimental data are required
to confirm this. It is known that long linear polymers
display nonequilibrium behavior in a moderate electric
field: their mobility deviates from the prediction of
the Nernst-Einstein relation, becoming field dependent
and independent of molecular weight [13]. This has
been attributed to perturbation of the chain configuration
from the equilibrium Gaussian coil to a conformation
elongated in the field direction [17—19]. Presumably, a
similar effect will occur for ring molecules too, although
the mechanism must differ in detail. At still higher
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field strengths, ring polymers have been predicted to
behave in the same way as linear polymers, adopting a
treelike conformation aligned along the field [20]. In

practice, circular DNA molecules get trapped in gels when
electrophoresis is attempted at elevated field strengths

[15], apparently because they are caught by dangling gel
fibers, like a hoop on a stick. Replacing the gel by a
microfabricated array of obstacles [21] would eliminate
this problem and allow the experimental investigation of
the electrophoretic mobility in strong fields.

Since the segment density of an ideal lattice animal in-

creases with its size (in three or fewer dimensions), the
self-interaction of a ring polymer in a gel must eventu-

ally become significant for long enough molecules. If
the cross-sectional radius of the polymer is r, the ex-
cluded volume of a pair of Kuhn segments [2] is v —b2r

Then the typical number of Kuhn segments that inter-
act with another can be estimated as n;„,—(NN, )2v/R3.
The excluded volume interaction may be neglected only
when n;„,is smaller than unity, and consequently must be
taken into account when N ) (b2/ar)4l'. For DNA in an

agarose gel (b = 100 nm, r = 1.5 nm, a = 300 nm) this

corresponds to molecules longer than about 30 kilobases.
To describe this situation, the above arguments for the
dynamics may be repeated for a chain that has the sta-
tistics of a self-avoiding lattice animal. The radius of
gyration scales as R —N" with v = 5/2(d + 2) in the

Flory approximation [22] (the Flory exponent is known

[23] to coincide with the exact result in d = 3). The
backbone length m scales with the total number n of seg-
ments as m —n~ where p = (d + 6)/(3d + 4) [24]. For
these values of the static exponents, the arguments that

led to Eqs. (I) and (2) yield T —N2+~ and D —N "
In three dimensions, one obtains T —N, D —N '
The excluded volume interaction slows down the relaxa-
tion of the polymer but, by swelling the chain, increases
its diffusion coefficient.

The description of the dynamics of an individual ring

polymer in a gel presented here may be useful as the ba-

sis of a theory of the viscoelastic behavior of a melt of
cyclic polymers [25,26]. But two additional effects have
to be considered. First, in a melt, the constraints to mo-

tion imposed by the surrounding polymers change as the
molecules diffuse. This dynamic dilution of constraints

[27] has to be evaluated self-consistently, taking into ac-
count the different relaxation times of different sections of
the lattice tree. Second, in our analysis we have neglected
the purely topological interaction of the polymer with it-

self. One loop of the molecule may pass through another;
and when this happens the penetrated loop cannot retract
until the first loop has moved back out. This interaction is
expected to slow down the dynamics significantly. Such

events will be more common in a melt of rings where the
loops of neighboring molecules are also involved, so the
transport properties are likely to depend more strongly on
molecular weight than Eqs. (1) and (2).

We thank J.L. Viovy for helpful discussions.
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